Publications by authors named "C Borgs"

The rapid advancement in artificial intelligence and natural language processing has led to the development of large-scale datasets aimed at benchmarking the performance of machine learning models. Herein, we introduce "RetChemQA", a comprehensive benchmark dataset designed to evaluate the capabilities of such models in the domain of reticular chemistry. This dataset includes both single-hop and multi-hop question-answer pairs, encompassing approximately 45,000 question and answers (Q&As) for each type.

View Article and Find Full Text PDF

The benefits of a telemedical support system for prehospital emergency medical services include high-level emergency medical support at the push of a button: delegation of drug administration, diagnostic assistance, initiation of therapeutic measures, or choice of hospital destination. At various European EMS sites telemedical routine systems are shortly before implementation. The aim of this study was to investigate the long-term effects of implementing a tele-EMS system on the structural and procedural quality indicators and therefore performance of an entire EMS system.

View Article and Find Full Text PDF

We construct a data set of metal-organic framework (MOF) linkers and employ a fine-tuned GPT assistant to propose MOF linker designs by mutating and modifying the existing linker structures. This strategy allows the GPT model to learn the intricate language of chemistry in molecular representations, thereby achieving an enhanced accuracy in generating linker structures compared with its base models. Aiming to highlight the significance of linker design strategies in advancing the discovery of water-harvesting MOFs, we conducted a systematic MOF variant expansion upon state-of-the-art MOF-303 utilizing a multidimensional approach that integrates linker extension with multivariate tuning strategies.

View Article and Find Full Text PDF

We leveraged the power of ChatGPT and Bayesian optimization in the development of a multi-AI-driven system, backed by seven large language model-based assistants and equipped with machine learning algorithms, that seamlessly orchestrates a multitude of research aspects in a chemistry laboratory (termed the ChatGPT Research Group). Our approach accelerated the discovery of optimal microwave synthesis conditions, enhancing the crystallinity of MOF-321, MOF-322, and COF-323 and achieving the desired porosity and water capacity. In this system, human researchers gained assistance from these diverse AI collaborators, each with a unique role within the laboratory environment, spanning strategy planning, literature search, coding, robotic operation, labware design, safety inspection, and data analysis.

View Article and Find Full Text PDF

We present a new framework integrating the AI model GPT-4 into the iterative process of reticular chemistry experimentation, leveraging a cooperative workflow of interaction between AI and a human researcher. This GPT-4 Reticular Chemist is an integrated system composed of three phases. Each of these utilizes GPT-4 in various capacities, wherein GPT-4 provides detailed instructions for chemical experimentation and the human provides feedback on the experimental outcomes, including both success and failures, for the in-context learning of AI in the next iteration.

View Article and Find Full Text PDF