Quasi-periodic eruptions (QPEs) are luminous bursts of soft X-rays from the nuclei of galaxies, repeating on timescales of hours to weeks. The mechanism behind these rare systems is uncertain, but most theories involve accretion disks around supermassive black holes (SMBHs) undergoing instabilities or interacting with a stellar object in a close orbit. It has been suggested that this disk could be created when the SMBH disrupts a passing star, implying that many QPEs should be preceded by observable tidal disruption events (TDEs).
View Article and Find Full Text PDFAntigen binding to the B-cell receptor (BCR) induces multiple signaling cascades that ultimately lead to B lymphocyte activation. In addition, the BCR regulates the key trafficking events that allow the antigen to reach endocytic compartments devoted to antigen processing, i.e.
View Article and Find Full Text PDFAntigen (Ag) capture and presentation onto major histocompatibility complex (MHC) class II molecules by B lymphocytes is mediated by their surface Ag receptor (B cell receptor [BCR]). Therefore, the transport of vesicles that carry MHC class II and BCR-Ag complexes must be coordinated for them to converge for processing. In this study, we identify the actin-associated motor protein myosin II as being essential for this process.
View Article and Find Full Text PDFBackground Information: Exosomes are small membrane vesicles secreted by several cell types during exocytic fusion of multivesicular bodies with the plasma membrane. Exosomes from tumour cells can transfer antigens from cell to cell, a property favouring antigen-specific immune responses in vitro and in vivo, and are thus an interesting putative therapeutic tool in human cancers. Exosomes have been well studied in EBV (Epstein-Barr virus)-transformed human B-cell lines; however, biological stimuli regulating exosome secretion quantitatively and/or qualitatively still remain poorly defined.
View Article and Find Full Text PDFExosomes are small membrane vesicles (50-90 nm in diameter) secreted by most hematopoietic cells. We provide here the first evidence for the presence of exosomes in vivo, in the blood. Plasma samples of all healthy donors tested (n = 15) contain vesicles that are similar in shape, size and density to the previously described exosomes.
View Article and Find Full Text PDF