Navigated transcranial magnetic stimulation (nTMS) has seldom been used to study visuospatial (VS) circuits so far. Our work studied (I) VS functions in neurosurgical oncological patients by using repetitive nTMS (rnTMS), (II) the possible subcortical circuits underneath, and (III) the correspondence between nTMS and direct cortical stimulation (DCS) during awake procedures. We designed a monocentric prospective study, adopting a protocol to use rnTMS for preoperative planning, including VS functions for lesions potentially involving the VS network, including neurosurgical awake and asleep procedures.
View Article and Find Full Text PDFObjective: Epilepsy is commonly associated with low-grade gliomas (LGGs), impacting patients' well-being. While resection is the primary treatment, seizures can persist postoperatively in 27%-55% of cases. The authors aimed to evaluate an electrocorticography (ECoG) and navigated transcranial magnetic stimulation (nTMS)-tailored supratotal resection (ETT-SpTR) for LGG in controlling seizures, preserving neurological function, and enhancing treatment effectiveness.
View Article and Find Full Text PDFSignificance: Histopathological examination of surgical biopsies, such as in glioma and glioblastoma resection, is hindered in current clinical practice by the long time required for the laboratory analysis and pathological screening, typically taking several days or even weeks to be completed.
Aim: We propose here a transportable, high-density, spectral scanning-based hyperspectral imaging (HSI) setup, named HyperProbe1, that can provide , fast biochemical analysis, and mapping of fresh surgical tissue samples, right after excision, and without the need for fixing, staining nor compromising the integrity of the tissue properties.
Approach: HyperProbe1 is based on spectral scanning via supercontinuum laser illumination filtered with acousto-optic tunable filters.
Objective: The onco-functional balance represents the primary goal in neuro-oncology. The increasing use of navigated transcranial magnetic stimulation (nTMS) allows the noninvasive characterization of cortical functional anatomy, and its reliability for motor and language mapping has previously been validated. Calculation and arithmetic processing has not been studied with nTMS so far.
View Article and Find Full Text PDF