J Allergy Clin Immunol Pract
February 2025
Chronic norovirus infection can lead to significant diarrhoea, malabsorption, and weight loss in immunodeficiency. The clinical and histological picture in these patients is remarkably similar, suggesting that the virus is a main driver for the enteropathy.
View Article and Find Full Text PDFThe glycosaminoglycan hyaluronan (HA) is a ubiquitous, nonsulfated polysaccharide with diverse biological roles mediated through its interactions with HA-binding proteins (HABPs). Most HABPs belong to the Link module superfamily, including the major HA receptor, CD44, and secreted protein TSG-6, which catalyzes the covalent transfer of heavy chains from inter-α-inhibitor onto HA. The structures of the HA-binding domains (HABDs) of CD44 (HABD_CD44) and TSG-6 (Link_TSG6) have been determined and their interactions with HA extensively characterized.
View Article and Find Full Text PDFEffector proteins are central to the success of plant pathogens, while immunity in host plants is driven by receptor-mediated recognition of these effectors. Understanding the molecular details of effector-receptor interactions is key for the engineering of novel immune receptors. Here, we experimentally determined the crystal structure of the Puccinia graminis f.
View Article and Find Full Text PDFThe Δδ regression approach of Blade et al. [ 2020, 124(43), 8959-8977] for accurately discriminating between solid forms using a combination of experimental solution- and solid-state NMR data with density functional theory (DFT) calculation is here extended to molecules with multiple conformational degrees of freedom, using furosemide polymorphs as an exemplar. As before, the differences in measured H and C chemical shifts between solution-state NMR and solid-state magic-angle spinning (MAS) NMR (Δδ) are compared to those determined by gauge-including projector augmented wave (GIPAW) calculations (Δδ) by regression analysis and a -test, allowing the correct furosemide polymorph to be precisely identified.
View Article and Find Full Text PDFCrop breeding for durable disease resistance is challenging due to the rapid evolution of pathogen virulence. While progress in resistance (R) gene cloning and stacking has accelerated in recent years, the identification of corresponding avirulence (Avr) genes in many pathogens is hampered by the lack of high-throughput screening options. To address this technology gap, we developed a platform for pooled library screening in plant protoplasts to allow rapid identification of interacting R-Avr pairs.
View Article and Find Full Text PDF