IEEE Trans Med Imaging
January 2008
The technology of multislice X-ray computed tomography (MSCT) provides volume data sets with approximately isotropic resolution, which permits a noninvasive 3-D measurement and quantification of airway geometry. In different diseases, like emphysema, chronic obstructive pulmonary disease (COPD), or cystic fribrosis, changes in lung parenchyma are associated with an increase in airway wall thickness. In this paper, we describe an objective measuring method of the airway geometry in the 3-D space.
View Article and Find Full Text PDFThe purpose of this study was to analyse the number and types of secondary fractures, and to investigate the impact of intradiscal cement leaks for adjacent vertebral fractures. Patients with osteoporotic vertebral fractures were treated with vertebroplasty. Results were documented and prospectively followed by means of computed tomography (CT) and magnetic resonance imaging.
View Article and Find Full Text PDFBr J Anaesth
December 2006
Background: Cyclic recruitment during mechanical ventilation contributes to ventilator associated lung injury. Two different pathomechanisms in acute respiratory distress syndrome (ARDS) are currently discussed: alveolar collapse vs persistent flooding of small airways and alveoli. We compare two different ARDS animal models by computed tomography (CT) to describe different recruitment and derecruitment mechanisms at different airway pressures: (i) lavage-ARDS, favouring alveolar collapse by surfactant depletion; and (ii) oleic acid ARDS, favouring alveolar flooding by capillary leakage.
View Article and Find Full Text PDFStudy Objective: To study the dynamics of lung compartments by dynamic CT (dCT) imaging during uninterrupted pressure-controlled ventilation (PCV) and different positive end-expiratory pressure (PEEP) settings in healthy and damaged lungs.
Design: Experimental animal investigation.
Setting: Experimental animal facility of a university department.
Purpose: To study quantitative changes of lung density distributions when recording in- and expiratory static pressure-volume curves by single slice computed tomography (CT).
Materials And Methods: Static in- and expiratory pressure volume curves (0 to 1000 ml, increments of 100 ml) were obtained in random order in 10 pigs after induction of lung damage by saline lavage. Simultaneously, CT acquisitions (slice thickness 1 mm, temporal increment 2 s) were performed in a single slice (3 cm below the carina).