Tungsten diselenide (WSe) is a 2D semiconducting material, promising for novel optoelectronic and phononic applications. WSe has complex lattice dynamics and phonon structure. Numerous discrepancies in the literature exist regarding the interpretation and identification of phonon modes.
View Article and Find Full Text PDFStudies of laser-driven strong field processes subjected to a (quasi-)static field have been mainly confined to theory. Here we provide an experimental realization by introducing a bichromatic approach for high harmonic generation (HHG) in a dielectric that combines an intense 70 femtosecond duration mid-infrared driving field with a weak 2 picosecond period terahertz (THz) dressing field. We address the physics underlying the THz field induced static symmetry breaking and its consequences on the efficient production/suppression of even-/odd-order harmonics, and demonstrate the ability to probe the HHG dynamics via the modulation of the harmonic distribution.
View Article and Find Full Text PDFMolecular structural retrieval based on electron diffraction has been proposed to determine the atomic positions of molecules with sub-angstrom spatial and femtosecond temporal resolutions. Given its success on small molecular systems, in this work, we point out that the accuracy of structure retrieval is constrained by the availability of a wide range of experimental data in the momentum space in all molecular systems. To mitigate the limitations, for laser-induced electron diffraction, here we retrieve molecular structures using two-dimensional (energy and angle) electron momentum spectra in the laboratory frame for a number of small molecular systems, which have previously been studied with 1D methods.
View Article and Find Full Text PDFTheoretical studies indicated that C_{60} exposed to linearly polarized intense infrared pulses undergoes periodic cage structural distortions with typical periods around 100 fs (1 fs=10^{-15} s). Here, we use the laser-driven self-imaging electron diffraction technique, previously developed for atoms and small molecules, to measure laser-induced deformation of C_{60} in an intense 3.6 μm laser field.
View Article and Find Full Text PDFForensic application of carbon isotope ratio measurements of honey and honey protein to investigate the degree of adulteration with high fructose corn syrup or other C plant sugars is well established. These measurements must use methods that exhibit suitable performance criteria, particularly with regard to measurement uncertainty and traceability - low levels of adulteration can only be detected by methods that result in suitably small measurement uncertainties such that differences of 1‰ or less can be reliably detected. Inter-laboratory exercises are invaluable to assess the state-of-the art of measurement capabilities of laboratories necessary to achieve such performance criteria.
View Article and Find Full Text PDF