The mechanism by which TCR signaling activates NF-kappaB is poorly understood. We demonstrate here that the IKK kinase complex is recruited to the immunological synapse and can be coprecipitated with the TCR after T cell activation. Using ZAP-70-deficient T cells expressing a hybrid molecule between the SH2 domain of ZAP-70 and NEMO/IKKgamma, we showed that targeting NEMO to the immunological synapse, and more specifically its 120 N-terminal amino acids, was sufficient to selectively restore NF-kappaB activation in response to TCR ligation.
View Article and Find Full Text PDFThe molecular basis of X-linked recessive anhidrotic ectodermal dysplasia with immunodeficiency (EDA-ID) has remained elusive. Here we report hypomorphic mutations in the gene IKBKG in 12 males with EDA-ID from 8 kindreds, and 2 patients with a related and hitherto unrecognized syndrome of EDA-ID with osteopetrosis and lymphoedema (OL-EDA-ID). Mutations in the coding region of IKBKG are associated with EDA-ID, and stop codon mutations, with OL-EDA-ID.
View Article and Find Full Text PDFThe Notch1 receptor is presented at the cell membrane as a heterodimer after constitutive processing by a furin-like convertase. Ligand binding induces the proteolytic release of Notch intracellular domain by a gamma-secretase-like activity. This domain translocates to the nucleus and interacts with the DNA-binding protein CSL, resulting in transcriptional activation of target genes.
View Article and Find Full Text PDFThe X protein of hepatitis B virus (HBV) is a transcriptional activator which is required for infection and may play an important role in HBV-associated hepatocarcinogenesis. It has been suggested that X acts as a nuclear coactivator or stimulates several signal transduction pathways by acting in the cytoplasm. One of these pathways leads to the nuclear translocation of NF-kappaB.
View Article and Find Full Text PDFDuring the late phase of adult T-cell leukemia/lymphoma, a severe lymphoproliferative disorder caused by human T-cell leukemia virus type 1 (HTLV-1), leukemic cells no longer produce interleukin-2. Several studies have reported the lack of the Src-like protein tyrosine kinase Lck and overexpression of Lyn and Fyn in these cells. In this report we demonstrate that, in addition to the downregulation of TCR, CD45, and Lck (which are key components of T-cell activation), HTLV-1-infected cell lines demonstrate a large increase of FynB, a Fyn isoform usually poorly expressed in T cells.
View Article and Find Full Text PDF