Course-based undergraduate research experiences (CUREs) provide students with valuable opportunities to engage in research in a classroom setting, expanding access to research opportunities for undergraduates, fostering inclusive research and learning environments, and bridging the gap between the research and education communities. While scientific practices, integral to the scientific discovery process, have been widely implemented in CUREs, there have been relatively few reports emphasizing the incorporation of core biology concepts into CURE curricula. In this study, we present a CURE that integrates core biology concepts, including genetic information flow, phenotype-genotype relationships, mutations and mutants, and structure-function relationships, within the context of mutant screening and gene loci identification.
View Article and Find Full Text PDFThe plant endoplasmic reticulum (ER) contacts heterotypic membranes at membrane contact sites (MCSs) through largely undefined mechanisms. For instance, despite the well-established and essential role of the plant ER-chloroplast interactions for lipid biosynthesis, and the reported existence of physical contacts between these organelles, almost nothing is known about the ER-chloroplast MCS identity. Here we show that the Arabidopsis ER membrane-associated VAP27 proteins and the lipid-binding protein ORP2A define a functional complex at the ER-chloroplast MCSs.
View Article and Find Full Text PDF