This study examined the effects of supplementing dairy cows with a mixture of essential oils on enteric CH emissions, apparent total-tract nutrient digestibility, N utilization, and lactational performance (production, components and efficiency). Thirty-two multiparous lactating Holstein cows were used in a randomized complete block design. Cows averaged (mean ± SD) 95 ± 15.
View Article and Find Full Text PDFMost trace minerals (TM) are fed above dairy cow requirements in commercial herds but their fate and effects on dairy cows have not been well documented. In this study, we evaluated the effects of feeding short-term sulfate TM above recommendations on apparent total-tract digestibility of nutrients, rumen fermentation characteristics, serum concentrations, and milk yield and composition, as well as milk, fecal, and urinary TM excretion in midlactation dairy cows. Eight multiparous Holstein cows with an average body weight (± SD) of 684 ± 29 kg at 82 ± 10 DIM in a quadruple 2 × 2 crossover design were fed a basal diet, differing in sulfate TM supplement concentrations, to provide either 0.
View Article and Find Full Text PDFTrop Anim Health Prod
November 2023
The objective of this study was to evaluate the influence of different heat-stress-reducing systems, i.e., sprinkler + artificial shade, shower + artificial shade, and artificial shade, on serum mineral, hormonal, hematological, and metabolite profiles, on milk production, and milk composition in lactating cows and pubertal heifers of Holstein and Jersey breeds.
View Article and Find Full Text PDFIn recent years, interest in using biochar as feed additives to mitigate enteric methane (CH) emissions from ruminants has increased. It has been suggested that the mitigating potential of biochar is influenced by its physical (e.g.
View Article and Find Full Text PDFIn North America, the nutrient requirements of dairy cattle are predicted using the Cornell Net Carbohydrate and Protein System (CNCPS) or the National Research Council (NRC). As Holstein is the most predominant dairy cattle breed, these models were developed based on the phenotypic, physiological, and genetic characteristics of this breed. However, these models may not be appropriate to predict the nutrient requirements of other breeds, such as Ayrshire, that are phenotypically and genetically different from Holstein.
View Article and Find Full Text PDF