Publications by authors named "C Beinat"

Glioblastoma multiforme (GBM) is the most common and aggressive primary brain tumor in adults, characterized by resistance to conventional therapies and poor survival. Ferroptosis, a form of regulated cell death driven by lipid peroxidation, has recently emerged as a promising therapeutic target for GBM treatment. However, there are currently no non-invasive imaging techniques to monitor the engagement of pro-ferroptotic compounds with their respective targets, or to monitor the efficacy of ferroptosis-based therapies.

View Article and Find Full Text PDF

Recent developments in cancer immunotherapy have highlighted the potential of harnessing natural killer (NK) cells in the treatment of neoplastic malignancies. Of these, bispecific antibodies, and NK cell engager (NKCE) protein therapeutics in particular, have been of interest. Here, we used phage display and yeast surface display to engineer RLN131, a unique cross-reactive antibody that binds to human, mouse, and cynomolgus NKp46, an activating receptor found on NK cells.

View Article and Find Full Text PDF

Despite recent advances in the use of adeno-associated viruses (AAVs) as potential vehicles for genetic intervention of central and peripheral nervous system-associated disorders, gene therapy for the treatment of neuropathology in adults has not been approved to date. The currently FDA-approved AAV-vector based gene therapies rely on naturally occurring serotypes, such as AAV2 or AAV9, which display limited or no transport across the blood-brain barrier (BBB) if systemically administered. Recently developed engineered AAV variants have shown broad brain transduction and reduced off-target liver toxicity in non-human primates (NHPs).

View Article and Find Full Text PDF

Purpose: The aim of this study was to develop a positron emission tomography (PET) radiotracer for measuring pyruvate kinase M2 (PKM2) with improved physicochemical and pharmacokinetic properties compared to [F]DASA-23.

Experimental Design: First, we synthesized [F]DASA-10 and tested its uptake and retention compared to [F]DASA-23 in human and mouse glioma cell lines. We then confirmed the specificity of [F]DASA-10 by transiently modulating the expression of PKM2 in DU145 and HeLa cells.

View Article and Find Full Text PDF

Positron emission tomography (PET) is a powerful tool for studying neuroinflammatory diseases; however, current PET biomarkers of neuroinflammation possess significant limitations. We recently reported a promising dendrimer PET tracer ([F]OP-801), which is selectively taken up by reactive microglia and macrophages. Here, we describe further important characterization of [F]OP-801 in addition to optimization and validation of a two-step clinical radiosynthesis.

View Article and Find Full Text PDF