Publications by authors named "C Bastianutto"

Polo-like kinase 1 (Plk1) is a critical regulator of many stages of mitosis; increasing evidence indicates that Plk1 overexpression correlates with poor clinical outcome, yet its mechanism of regulation remains unknown. Hence, a detailed evaluation was undertaken of Plk1 expression in human nasopharyngeal cancer (NPC), the cellular effects of targeting Plk1 using siRNA in combination with ionizing radiation (RT) and potential upstream microRNAs (miRs) that might regulate Plk1 expression. Using immunohistochemistry, Plk1 was observed to be overexpressed in 28 of 40 (70%) primary NPC biopsies, which in turn was associated with a higher likelihood of recurrence (p = 0.

View Article and Find Full Text PDF

A potential therapeutic agent for human head and neck cancer (HNC), cetrimonium bromide (CTAB), was identified through a cell-based phenotype-driven high-throughput screen (HTS) of 2000 biologically active or clinically used compounds, followed by in vitro and in vivo characterization of its antitumor efficacy. The preliminary and secondary screens were performed on FaDu (hypopharyngeal squamous cancer) and GM05757 (primary normal fibroblasts), respectively. Potential hit compounds were further evaluated for their anticancer specificity and efficacy in combination with standard therapeutics on a panel of normal and cancer cell lines.

View Article and Find Full Text PDF

Overexpression of BMI1 correlates with cancer development, progression, and therapy failure; however, the underlying molecular mechanisms remain to be fully elucidated. Using the C666-1 nasopharyngeal cancer (NPC) model, the role of BMI1 in mediating response of NPC cells to radiation therapy (RT) was investigated. The results showed a novel radioresistance function for BMI1 in NPC, wherein BMI1 depletion sensitized NPC cells to RT.

View Article and Find Full Text PDF

The colony formation assay (CFA) is the gold standard for measuring the effects of cytotoxic agents on cancer cells in vitro; however, in its traditional 6-well format, it is a time-consuming assay, particularly when evaluating combination therapies. In the interest of increased efficiency, the 6-well CFA was converted to a 96-well format using an automated colony counting algorithm. The 96-well CFA was validated using ionizing radiation therapy on the FaDu (human hypopharyngeal squamous cell) and A549 (human lung) cancer cell lines.

View Article and Find Full Text PDF

Purpose: The Epstein Barr virus (EBV) is intimately associated with nasopharyngeal cancer (NPC) in a latent state expressing a limited number of genes. The process of switching from latency to replication is not well understood, particularly in response to DNA stress; hence, the focus of this study is on an EBV-positive NPC model.

Experimental Design: C666-1 cells were exposed to radiation (2-15 Gy) or cisplatin (0.

View Article and Find Full Text PDF