Background: The hepatitis C virus (HCV) mutates within human leucocyte antigen (HLA) class I restricted immunodominant epitopes of the non-structural (NS) 3/4A protease to escape cytotoxic T lymphocyte (CTL) recognition and promote viral persistence. However, variability is not unlimited, and sometimes almost absent, and factors that restrict viral variability have not been defined experimentally.
Aims: We wished to explore whether the variability of the immunodominant CTL epitope at residues 1073-1081 of the NS3 protease was limited by viral fitness.
Background: Preventive and therapeutic vaccine strategies aimed at controlling hepatitis C virus (HCV) infection should mimic the immune responses observed in patients who control or clear HCV, specifically T helper (Th) type 1 and CD8+ cell responses to multiple antigens, including nonstructural protein (NS) 3. Given the experience with human immunodeficiency virus, the best candidates for this are based on DNA prime, pox, or adenovirus boost regimens.
Methods: In rhesus macaques, we compared NS3-expressing DNA prime and adenovirus boost strategy with 2 alternative priming approaches aimed at modifying Th1 and CD8+ responses: DNA adjuvanted with interleukin (IL)-2- and -12-encoding plasmids or Semliki Forest virus (SFV).