The Consortium on Adventitious Agent Contamination in Biomanufacturing (CAACB) collected historical data from 20 biopharmaceutical industry members on their experience with the in vivo adventitious virus test, the in vitro virus test, and the use of next generation sequencing (NGS) for viral safety. Over the past 20 years, only three positive in vivo adventitious virus test results were reported, and all were also detected in another concurrent assay. In more than three cases, data collected as a part of this study also found that the in vivo adventitious virus test had given a negative result for a sample that was later found to contain virus.
View Article and Find Full Text PDFOsteogenesis Imperfecta (OI) is a heterogeneous genetic disorder characterized by bone fragility and fracture. Mutations in 20 distinct genes can cause OI, and therefore, the genetic diagnosis of OI is frequently difficult to obtain because of the great number of genes that can be related with this disease. Studies that report the most frequently mutated genes in OI patients can help to improve molecular strategies for diagnosis of the disease.
View Article and Find Full Text PDFOsteogenesis imperfecta (OI) is a heterogeneous disorder that causes fragility, deformity, and fractures in bones. A large number of genes that are associated with the disease have been identified in the last decade; this makes the genetic diagnosis of OI more difficult. To improve our knowledge of the genetic mutation profile in OI we used single-stranded conformation polymorphism screening and automated sequencing to investigate the SERPINH1, FKBP10, and SERPINF1 genes, which are related to recessive OI, in 23 unrelated Brazilian patients.
View Article and Find Full Text PDFOsteogenesis imperfecta (OI) is a genetic disease characterized by bone deformities and fractures. Most cases are caused by autosomal dominant mutations in the type I collagen genes COL1A1 and COL1A2; however, an increasing number of recessive mutations in other genes have been reported. The LEPRE1, CRTAP, and PPIB genes encode proteins that form the P3H1/CRTAP/CypB complex, which is responsible for posttranslational modifications of type I collagen.
View Article and Find Full Text PDFBackground: Hypertrophic cardiomyopathy (HC) is the most frequent cardiac hereditary disease, caused by mutations in sarcomere protein coding genes. Although more than 430 mutations have been identified in several continents and countries, there have been no reports of mutations in Brazil.
Objective: To carry out a genetic study to identify genetic mutations that cause HC in a group of patients in Espirito Santo, Brazil.