Background And Aims: In response to direct-acting antivirals (DAAs) therapy, patients who experience a decrease in hepatic venous pressure gradient (HVPG) considerably reduce liver complications and have increased survival. This study aimed to assess the metabolomic changes associated with the changes in HVPG from the start of DAA therapy until 48 weeks after effective DAA therapy in patients with advanced HCV-related cirrhosis.
Methods: We carried out a multicenter longitudinal study in 31 patients with advanced hepatitis C virus (HCV)-related cirrhosis.
Rationale: Biologics are becoming increasingly important in the management of severe asthma. However, little is known about the systemic immunometabolic consequences of Th2 response blockage.
Objectives: To provide a better immunometabolic understanding of the effects of mepolizumab and omalizumab treatments by identifying potential biomarkers for monitoring.
Mucormycosis is an emerging, life-threatening human infection caused by fungi of the order Mucorales. Metabolic disorders uniquely predispose an ever-expanding group of patients to mucormycosis via poorly understood mechanisms. Therefore, it is highly likely that uncharacterized host metabolic effectors confer protective immunity against mucormycosis.
View Article and Find Full Text PDFOxylipins are signaling lipids derived from the oxidation of polyunsaturated fatty acids (PUFAs). In lipidomic studies, human plasma may be subjected to various storage conditions and freeze-thaw cycles, which may impact the analysis of these compounds. In this study, we used liquid chromatography coupled with mass spectrometry (LC-MS) to examine the influence of up to five freeze-thaw cycles (FTCs) on free and total (mostly esterified) oxylipins in human plasma and the influence of temperature and storage duration (4 °C for up to 120 h and -20 °C and -80 °C for 1-98 days) in the presence or absence of butylated hydroxytoluene (BHT) on extracted oxylipins stored in LC-MS amber vials.
View Article and Find Full Text PDFMacrophages in the B cell lymphoma microenvironment represent a functional node in progression and therapeutic response. We assessed metabolic regulation of macrophages in the context of therapeutic antibody-mediated phagocytosis. Pentose phosphate pathway (PPP) inhibition induces increased phagocytic lymphoma cell clearance by macrophages in vitro, in primary human chronic lymphocytic leukemia (CLL) patient co-cultures, and in mouse models.
View Article and Find Full Text PDF