Publications by authors named "C Barajas-Lopez"

This study sought to examine the co-expression of the following purinergic receptor subunits: P2X1, P2X1del, P2X4, and P2X7 and characterize the P2X response in human monocyte-derived macrophages (MDMs). Single-cell RT-PCR shows the presence of P2X1, P2X1del, P2X4, and P2X7 mRNA in 40%, 5%, 20%, and 90% of human MDMs, respectively. Of the studied human MDMs, 25% co-expressed P2X1 and P2X7 mRNA; 5% co-expressed P2X4 and P2X7; and 15% co-expressed P2X1, P2X4, and P2X7 mRNA.

View Article and Find Full Text PDF

Extracellular ATP and trophic factors released by exocytosis modulate proliferation, migration, and differentiation in multipotent stem cells (MpSC); however, the purinoceptors mediating this signaling remain uncharacterized in stem cells derived from the human olfactory epithelium (hOE). Our aim was to determine the purinergic pathway in isolated human olfactory neuronal precursor cells (hONPC) that exhibit MpSC features. Cloning by limiting dilution from a hOE heterogeneous primary culture was performed to obtain a culture predominantly constituted by hONPC.

View Article and Find Full Text PDF

We, hereby, characterize the pharmacological effects of physiological concentrations of Zinc on native myenteric P2X receptors from guinea-pig small intestine and on P2X2 isoforms present in most myenteric neurons. This is the first study describing opposite effects of Zinc on these P2X receptors. It was not possible to determine whether both effects were concentration dependent, yet the inhibitory effect was mediated by competitive antagonism and was concentration dependent.

View Article and Find Full Text PDF

Here we describe a culture technique of cells dissociated from the external muscularis of the guinea pig small intestine, which allows us to maintain all the elements involved in the intestinal peristaltic reflex. After a few days in culture, these cells reorganize to form a small group of cells that permit the generation of pacemaker activity, spontaneous contractions, and the development of inhibitory and excitatory junction potentials in the petri dish, all elements involved in the peristaltic reflex. Therefore, these co-cultures are suitable to study the cellular and molecular aspects related to the development, maintenance, and modulation of motor intestinal functions.

View Article and Find Full Text PDF

Intestinal parasites alter gastrointestinal (GI) functions like the cholinergic function. Aspiculuris tetraptera is a pinworm frequently observed in laboratory facilities, which infests the mice cecum and proximal colon. However, little is known about the impact of this infection on the GI sensitivity.

View Article and Find Full Text PDF