Pressure-jump (p-jump)-induced relaxation kinetics was used to explore the energy landscape of protein folding/unfolding of Y115W, a fluorescent variant of ribonuclease A. Pressure-jumps of 40 MPa amplitude (5 ms dead-time) were conducted both to higher (unfolding) and to lower (folding) pressure, in the range from 100 to 500 MPa, between 30 and 50 degrees C. Significant deviations from the expected symmetrical protein relaxation kinetics were observed.
View Article and Find Full Text PDFA common mechanism of conformational changes and pathological aggregation of proteins associated with amyloid diseases remains to be proven. High pressure is emerging as a new strategy for studying aspects of amyloid formation. Pressure provides a convenient means to populate and characterize partially folded states, which are thought to have a key role in assembly processes of proteins into amyloid fibrils.
View Article and Find Full Text PDFBiochim Biophys Acta
March 2006
Sulfolobus solfataricus carboxypeptidase, (CPSso), is a heat- and pressure-resistant zinc-metalloprotease. Thanks to its properties, it is an ideal tool for investigating the role of non-covalent interactions in substrate binding. It has a broad substrate specificity as it can cleave any N-blocked amino acid (except for N-blocked proline).
View Article and Find Full Text PDFWithout being comprehensive in this mini-review, I will address perspectives, some speculative, for the development and use of high pressure to explore biochemical phenomena. This will be illustrated with several examples.
View Article and Find Full Text PDFThe pressure behavior of proteins may be summarized as a the pressure-induced disordering of their structures. This thermodynamic parameter has effects on proteins that are similar but not identical to those induced by temperature, the other thermodynamic parameter. Of particular importance are the intermolecular interactions that follow partial protein unfolding and that give rise to the formation of fibrils.
View Article and Find Full Text PDF