Publications by authors named "C Baldisserotto"

Background: Microbial biofertilizers and algae-based biostimulants have been recognized for supporting sustainable agriculture. Field experiments were conducted in 2022 and 2023 growing seasons in an organic farm located in Ferrara (Italy) with the aim of evaluating plant growth-promoting microorganisms (PGPMs) and algae-based biostimulants (Biost) in tomato (Solanum lycopersicum L.).

View Article and Find Full Text PDF

Microalgae are considered promising sustainable sources of natural bioactive compounds to be used in biotechnological sectors. In recent years, attention is increasingly given to the search of microalgae-derived compounds with antioxidant and anti-inflammatory properties for nutraceutical or pharmacological issues. In this context, attention is usually focused on the composition and bioactivity of algae or their extracts, while less interest is driven to their biological features, for example, those related to morphology and cultivation conditions.

View Article and Find Full Text PDF
Article Synopsis
  • The study looks at wheat plants that don’t have enough chlorophyll and how that affects the structure of their chloroplasts, which are important for photosynthesis.
  • Researchers compared these mutants to normal wheat plants and found that the mutant plants had smaller and oddly shaped stacks of grana (the disks in chloroplasts where photosynthesis happens).
  • They discovered that these changes in granum structure are connected to problems with excess light and energy in the plant, which can cause stress.
View Article and Find Full Text PDF

Within the ancient vascular plant lineage known as lycophytes, many Selaginella species contain only one giant chloroplast in the upper epidermal cells of the leaf. In deep-shade species, such as S. martensii, the chloroplast is cup-shaped and the thylakoid system differentiates into an upper lamellar region and a lower granal region (bizonoplast).

View Article and Find Full Text PDF

In vascular plants, the thylakoid architecture is dominated by the highly structured multiple membrane layers known as grana. The structural diversity of the thylakoid system among plant species is mainly determined by the adaptation to the growth light regime, according to a paradigm stating that shade-tolerant species are featured by a high membrane extension with an enhanced number of thylakoid layers per granum. In this study, the thylakoid system was analysed in Selaginella martensii Spring, a shade-adapted rainforest species belonging to lycophytes, a diminutive plant lineage, sister clade of all other vascular plants (euphyllophytes, including ferns and seed plants).

View Article and Find Full Text PDF