We demonstrate how to directly transform a close-packed hexagonal colloidal monolayer into nonclose-packed particle arrays of any two-dimensional symmetry at the air/water interface. This major advancement in the field of nanoparticle self-assembly is based on a simple one-dimensional stretching step in combination with the particle array orientation. Our method goes far beyond existing strategies and allows access to all possible two-dimensional Bravais lattices.
View Article and Find Full Text PDFMetal-insulator-metal (MIM) structures show great potential for numerous photonic applications due to their ability to confine light energy to volumes with deeply sub-wavelength dimensions. Here, MIM structures comprising hexagonal gold nanohole arrays were prepared by nanosphere lithography. Angle-resolved UV-vis-NIR spectroscopy revealed a series of narrow, dispersive and non-dispersive modes, which were attributed to the excitation of surface plasmon polariton (SPP) modes.
View Article and Find Full Text PDFIn this contribution, the optical losses and gains attributed to periodic nanohole array electrodes in polymer solar cells are systematically studied. For this, thin gold nanomeshes with hexagonally ordered holes and periodicities (P) ranging from 202 nm to 2560 nm are prepared by colloidal lithography. In combination with two different active layer materials (P3HT:PCBM and PTB7:PCBM), the optical properties are correlated with the power conversion efficiency (PCE) of the solar cells.
View Article and Find Full Text PDFMultimodal nano-imaging in electrochemical environments is important across many areas of science and technology. Here, scanning electrochemical microscopy (SECM) using an atomic force microscope (AFM) platform with a nanoelectrode probe is reported. In combination with PeakForce tapping AFM mode, the simultaneous characterization of surface topography, quantitative nanomechanics, nanoelectronic properties, and electrochemical activity is demonstrated.
View Article and Find Full Text PDFThe defined immobilization of colloidal particles on a non-close packed lattice on solid substrates is a challenging task in the field of directed colloidal self-assembly. In this contribution the controlled self-assembly of polystyrene beads into chemically modified nanomeshes with a high particle surface coverage is demonstrated. For this, solely electrostatic interaction forces were exploited by the use of topographically shallow gold nanomeshes.
View Article and Find Full Text PDF