Publications by authors named "C B Eom"

Soft robots have partially or entirely provided versatile opportunities for issues or roles that cannot be addressed by conventional machine robots, although most studies are limited to designs, controls, or physical/mechanical motions. Here, we present a transformable, reconfigurable robotic platform created by the integration of magnetically responsive soft composite matrices with deformable multifunctional electronics. Magnetic compounds engineered to undergo phase transition at a low temperature can readily achieve reversible magnetization and conduct various changes of motions and shapes.

View Article and Find Full Text PDF

Unconventional spin-orbit torques arising from electric-field-generated spin currents in anisotropic materials have promising potential for spintronic applications, including for perpendicular magnetic switching in high-density memory applications. Here, all the independent elements of the spin torque conductivity tensor allowed by bulk crystal symmetries for the tetragonal conductor IrO are determined via measurements of conventional (in-plane) anti-damping torques for IrO thin films in the high-symmetry (001) and (100) orientations. It is then tested whether rotational transformations of this same tensor can predict both the conventional and unconventional anti-damping torques for IrO thin films in the lower-symmetry (101), (110), and (111) orientations, finding good agreement.

View Article and Find Full Text PDF

As the regenerative mechanisms of biological organisms, self-healing provides useful functions for soft electronics or associated systems. However, there have been few examples of soft electronics where all components have self-healing properties while also ensuring compatibility between components to achieve multifunctional and resilient bio-integrated electronics. Here, we introduce a stretchable, biodegradable, self-healing conductor constructed by combination of two layers: (i) synthetic self-healing elastomer and (ii) self-healing conductive composite with additives.

View Article and Find Full Text PDF

Magnons, bosonic quasiparticles carrying angular momentum, can flow through insulators for information transmission with minimal power dissipation. However, it remains challenging to develop a magnon-based logic due to the lack of efficient electrical manipulation of magnon transport. Here we show the electric excitation and control of multiferroic magnon modes in a spin-source/multiferroic/ferromagnet structure.

View Article and Find Full Text PDF

Since the discovery of two-dimensional electron gas at the LaAlO/SrTiO interface, its intriguing physical properties have garnered significant interests for device applications. Yet, understanding its response to electrical stimuli remains incomplete. Our in-situ transmission electron microscopy analysis of a LaAlO/SrTiO two-dimensional electron gas device under electrical bias reveals key insights.

View Article and Find Full Text PDF