Introduction: To systematically review the available literature reporting on genetic mutations leading to dento-maxillofacial malformations in mice.
Materials And Methods: An electronic search was performed across Embase, PubMed, Web of Science, and Scopus databases up to May 2024, targeting all in vivo studies on gene mutations causing dento-maxillofacial deformities in mice. Studies reporting oral clefts were excluded.
Morphological mouse phenotyping plays a pivotal role in the translational setting and even more in the area of auditory research, where mouse is a central model organism due to the evolutionary genetic relationship and morpho-functional analogies with the human auditory system. However, some results obtained in murine models cannot be translated to humans due to the inadequate description of experimental conditions underlying poor reproducibility. We approach the characterization of the aging process of the mouse cochlea in animals up to 18 months of age belonging to two of the most used outbred (CD1) and inbred (C57BL/6N) strains.
View Article and Find Full Text PDFAims: Orthodontic force (OF) induces a variety of reactions in the periodontal ligament (PDL) that could potentially account for individual variability regarding orthodontic tooth movement (OTM). This study investigates the transcriptomic profile of human PDL tissue subjected to OF in vivo for 7 and 28 days, additionally comparing the differences between maxillary and mandibular PDL.
Methods: Healthy patients requiring orthodontic premolar extractions were randomly assigned to one of three groups: control (CG) where no OF was applied, 7 days and 28 days, where premolars were extracted either 7 or 28 days after the application of a 50-100 g OF.
Superconducting microstrip single photon detectors (SMSPDs) are increasingly attracting the interest of the scientific community as a new platform for large area detectors with unprecedented advantaged in terms of fabrication. However, while their operativity at the telecommunication wavelength was achieved, working beyond 1.55 µm is challenging.
View Article and Find Full Text PDFObjectives: The objective of this study is to analyse the gene expression profile of the dental pulp (DP) of human premolars subjected to 7 and 28 days of orthodontic force (OF) in vivo by using RNA sequencing. The maxillary and mandibular DP were additionally compared.
Methods: Healthy patients requiring orthodontic premolar extractions were randomly assigned to one of the three groups: control (CG) where no OF was applied, 7 and 28 days, where premolars were extracted either 7 or 28 days after the application of a 50-100 g OF.