Saccadic eye movements of a normal subject were assessed through semi-quantitative analysis algorithms based on linear and non-linear test application in order to highlight the dynamics type characterizing saccadic neural system behavior. These movements were recorded during a simple visually-guided saccade test and one with a cognitive load involving button pressing to show a decision. Following the application of specific computational tests, chaotic dynamical trend dominancy was mostly revealed with some differences between the two saccade recording conditions: auto-correlation time was increased from 170 to 240 by cognitive task superposition and the Hurst exponent was enhanced from 0.
View Article and Find Full Text PDFWe move our eyes to explore the world, but visual areas determining where to look next (action) are different from those determining what we are seeing (perception). Whether, or how, action and perception are temporally coordinated is not known. The preparation time course of an action (e.
View Article and Find Full Text PDFBackground: Saccades are rapid eye movements used to gather information about a scene which requires both action and perception. These are usually studied separately, so that how perception influences action is not well understood. In a dual task, where the subject looks at a target and reports a decision, subtle changes in the saccades might be caused by action-perception interactions.
View Article and Find Full Text PDFEvidence of a chaotic behavioral trend in eye movement dynamics was examined in the case of a saccadic temporal series collected from a healthy human subject. Saccades are highvelocity eye movements of very short duration, their recording being relatively accessible, so that the resulting data series could be studied computationally for understanding the neural processing in a motor system. The aim of this study was to assess the complexity degree in the eye movement dynamics.
View Article and Find Full Text PDF