PLoS One
January 2021
Chronic rhinosinusitis (CRS) is a chronic disease that involves long-term inflammation of the nasal cavity and paranasal sinuses. Bacterial biofilms present on the sinus mucosa of certain patients reportedly exhibit resistance against traditional antibiotics, as evidenced by relapse, resulting in severe disease. The aim of this study was to determine the killing activity of human cathelicidin antimicrobial peptides (LL-37, LL-31) and their D-enantiomers (D-LL-37, D-LL-31), alone and in combination with conventional antibiotics (amoxicillin; AMX and tobramycin; TOB), against bacteria grown as biofilm, and to investigate the biological activities of the peptides on human lung epithelial cells.
View Article and Find Full Text PDFAdjunctive use of antibiotics in periodontal treatment have limitations and disadvantages including bacterial resistance. Antimicrobial peptides (AMPs) are potential new agents that can combat bacterial infection. In this study, antimicrobial activity of different concentrations of conventional antibiotics minocycline (MH), doxycycline (DOX), and antimicrobial peptides LL-37, LL-31, Lactoferrin chimera (LFchimera) and Innate Defense Regulator Peptide 1018 (IDR-1018) against Aggregatibacter actinomycetemcomitans ATCC 43718 were determined using colony culturing assay.
View Article and Find Full Text PDFMelioidosis is a severe disease caused by . The biofilm of acquires resistance to several antibiotics and may be related to relapse in melioidosis patients. Here, the killing activity of antimicrobial peptides (LL-37, LL-31) and the D-enantiomers (D-LL-37, D-LL-31) in combination with ceftazidime (CAZ) against 1026b, H777 and a biofilm mutant M10, derived from H777 grown under biofilm-stimulating conditions was observed.
View Article and Find Full Text PDFThe biofilm-forming ability of Burkholderia pseudomallei is crucial for its survival in unsuitable environments and is correlated with antibiotic resistance and relapsing cases of melioidosis. Extracellular DNA (eDNA) is an essential component for biofilm development and maturation in many bacteria. The aim of this study was to investigate the eDNA released by B.
View Article and Find Full Text PDFBurkholderia pseudomallei is the causative agent of melioidosis and regarded as a bioterrorism threat. It can adapt to the nutrient-limited environment as the bacteria can survive in triple distilled water for 16 years. Moreover, B.
View Article and Find Full Text PDF