The excited states of N=44 ^{74}Zn were investigated via γ-ray spectroscopy following ^{74}Cu β decay. By exploiting γ-γ angular correlation analysis, the 2_{2}^{+}, 3_{1}^{+}, 0_{2}^{+}, and 2_{3}^{+} states in ^{74}Zn were firmly established. The γ-ray branching and E2/M1 mixing ratios for transitions deexciting the 2_{2}^{+}, 3_{1}^{+}, and 2_{3}^{+} states were measured, allowing for the extraction of relative B(E2) values.
View Article and Find Full Text PDFWe have performed the first direct measurement of the ^{83}Rb(p,γ) radiative capture reaction cross section in inverse kinematics using a radioactive beam of ^{83}Rb at incident energies of 2.4 and 2.7A MeV.
View Article and Find Full Text PDFHigh-accuracy mass measurements of neutron-deficient Yb isotopes have been performed at TRIUMF using TITAN's multiple-reflection time-of-flight mass spectrometer (MR-TOF-MS). For the first time, an MR-TOF-MS was used on line simultaneously as an isobar separator and as a mass spectrometer, extending the measurements to two isotopes further away from stability than otherwise possible. The ground state masses of ^{150,153}Yb and the excitation energy of ^{151}Yb^{m} were measured for the first time.
View Article and Find Full Text PDFThe ^{80}Ge structure was investigated in a high-statistics β-decay experiment of ^{80}Ga using the GRIFFIN spectrometer at TRIUMF-ISAC through γ, β-e, e-γ, and γ-γ spectroscopy. No evidence was found for the recently reported 0_{2}^{+} 639-keV level suggested as evidence for low-energy shape coexistence in ^{80}Ge. Large-scale shell model calculations performed in ^{78,80,82}Ge place the 0_{2}^{+} level in ^{80}Ge at 2 MeV.
View Article and Find Full Text PDFThe discovery of presolar grains in primitive meteorites has initiated a new era of research in the study of stellar nucleosynthesis. However, the accurate classification of presolar grains as being of specific stellar origins is particularly challenging. Recently, it has been suggested that sulfur isotopic abundances may hold the key to definitively identifying presolar grains with being of nova origins and, in this regard, the astrophysical ^{33}Cl(p,γ)^{34}Ar reaction is expected to play a decisive role.
View Article and Find Full Text PDF