Publications by authors named "C Amelynck"

Plants, under stressful conditions, can proceed to photosynthetic adjustments in order to acclimatize and alleviate the detrimental impacts on the photosynthetic apparatus. However, it is currently unclear how adjustment of photosynthetic processes under environmental constraints by plants influences CO gas exchange at the ecosystem-scale. Over a 2-year period, photosynthetic performance of a temperate grassland ecosystem was characterized by conducting frequent chlorophyll fluorescence (ChlF) measurements on three primary grassland species ( L.

View Article and Find Full Text PDF

Several experiments have highlighted the complexity of stress interactions involved in plant response. The impact in field conditions of combined environmental constraints on the mechanisms involved in plant photosynthetic response, however, remains understudied. In a long-term field study performed in a managed grassland, we investigated the photosynthetic apparatus response of the perennial ryegrass (Lolium perenne L.

View Article and Find Full Text PDF

Methanol is the second most abundant volatile organic compound in the troposphere and plays a significant role in atmospheric chemistry. While there is consensus about the dominant role of living plants as the major source and the reaction with OH as the major sink of methanol, global methanol budgets diverge considerably in terms of source/sink estimates reflecting uncertainties in the approaches used to model, and the empirical data used to separately constrain these terms. Here we compiled micrometeorological methanol flux data from eight different study sites and reviewed the corresponding literature in order to provide a first cross-site synthesis of the terrestrial ecosystem-scale methanol exchange and present an independent data-driven view of the land-atmosphere methanol exchange.

View Article and Find Full Text PDF

Rationale: Plants emit a blend of oxygenated volatile C(6) compounds, known as green leaf volatiles (GLVs), in response to leaf tissue damage related to stress conditions. On-line chemical ionization mass spectrometry (CI-MS) techniques have often been used to study the dynamics of these emissions but they fail to selectively detect some important GLV compounds.

Methods: A flowing afterglow tandem mass spectrometer (FA-TMS) was used to investigate the feasibility of selective on-line detection of isomeric hexen-1-ols and hexanal.

View Article and Find Full Text PDF