Publications by authors named "C Alex Carrasquer"

The categorical structure-activity relationship (cat-SAR) expert system has been successfully used in the analysis of chemical compounds that cause toxicity. Herein we describe the use of this fragment-based approach to model ligands for the G protein-coupled receptor 119 (GPR119). Using compounds that are known GPR119 agonists and compounds that we have confirmed experimentally that are not GPR119 agonists, four distinct cat-SAR models were developed.

View Article and Find Full Text PDF

Low molecular weight (LMW) respiratory sensitizers can cause occupational asthma but due to a lack of adequate test methods, prospective identification of respiratory sensitizers is currently not possible. This article presents the evaluation of structure-activity relationship (SAR) models as potential methods to prospectively conclude on the sensitization potential of LMW chemicals. The predictive performance of the SARs calculated from their training sets was compared to their performance on a dataset of newly identified respiratory sensitizers and nonsensitizers, derived from literature.

View Article and Find Full Text PDF

We previously demonstrated that fragment based cat-SAR carcinogenesis models consisting solely of mutagenic or non-mutagenic carcinogens varied greatly in terms of their predictive accuracy. This led us to investigate how well the rat cancer cat-SAR model predicted mutagens and non-mutagens in their learning set. Four rat cancer cat-SAR models were developed: Complete Rat, Transgender Rat, Male Rat and Female Rat, with leave-one-out (LOO) validation concordance values of 69%, 74%, 67% and 73%, respectively.

View Article and Find Full Text PDF

SAR models were developed for 12 rat tumour sites using data derived from the Carcinogenic Potency Database. Essentially, the models fall into two categories: Target Site Carcinogen-Non-Carcinogen (TSC-NC) and Target Site Carcinogen-Non-Target Site Carcinogen (TSC-NTSC). The TSC-NC models were composed of active chemicals that were carcinogenic to a specific target site and inactive ones that were whole animal non-carcinogens.

View Article and Find Full Text PDF

Structure-activity relationship (SAR) models are powerful tools to investigate the mechanisms of action of chemical carcinogens and to predict the potential carcinogenicity of untested compounds. We describe the use of a traditional fragment-based SAR approach along with a new virtual ligand-protein interaction-based approach for modeling of nonmutagenic carcinogens. The ligand-based SAR models used descriptors derived from computationally calculated ligand-binding affinities for learning set agents to 5495 proteins.

View Article and Find Full Text PDF