The Open Databases Integration for Materials Design (OPTIMADE) application programming interface (API) empowers users with holistic access to a growing federation of databases, enhancing the accessibility and discoverability of materials and chemical data. Since the first release of the OPTIMADE specification (v1.0), the API has undergone significant development, leading to the v1.
View Article and Find Full Text PDFThe need for improved functionalities in extreme environments is fuelling interest in high-entropy ceramics. Except for the computational discovery of high-entropy carbides, performed with the entropy-forming-ability descriptor, most innovation has been slowly driven by experimental means. Hence, advancement in the field needs more theoretical contributions.
View Article and Find Full Text PDFDiscovering multifunctional materials with tunable plasmonic properties, capable of surviving harsh environments is critical for advanced optical and telecommunication applications. We chose high-entropy transition-metal carbides because of their exceptional thermal, chemical stability, and mechanical properties. By integrating computational thermodynamic disorder modeling and time-dependent density functional theory characterization, we discovered a crossover energy in the infrared and visible range, corresponding to a metal-to-dielectric transition, exploitable for plasmonics.
View Article and Find Full Text PDFA metallic, covalently bonded carbon allotrope is predicted via first principles calculations. It is composed of an sp carbon framework that acts as a diamond anvil cell by constraining the distance between parallel cis-polyacetylene chains. The distance between these sp carbon atoms renders the phase metallic, and yields two well-nested nearly parallel bands that cross the Fermi level.
View Article and Find Full Text PDFHigh-entropy ceramics are attracting significant interest due to their exceptional chemical stability and physical properties. While configurational entropy descriptors have been successfully implemented to predict their formation and even to discover new materials, the contribution of vibrations to their stability has been contentious. This work unravels the issue by computationally integrating disorder parameterization, phonon modeling, and thermodynamic characterization.
View Article and Find Full Text PDF