Cyclopropane fatty acid synthases (CFAS) catalyze the conversion of unsaturated fatty acids to cyclopropane fatty acids (CFAs) within bacterial membranes. This modification alters the biophysical properties of membranes and has been correlated with virulence in several human pathogens. Despite the central role played by CFAS enzymes in regulating bacterial stress responses, the mechanistic properties of the CFAS enzyme family and the consequences of CFA biosynthesis remain largely uncharacterized in most bacteria.
View Article and Find Full Text PDFBiofilm infections are a major cause of food poisoning and hospital-acquired infections. Quaternary ammonium compounds are a group of effective disinfectants widely used in industry and households, yet their efficacy is lessened when used as antibiofilm agents compared to that against planktonic bacteria. It is therefore necessary to identify alternative formulations of quaternary ammonium compounds to achieve an effective biofilm dispersal.
View Article and Find Full Text PDFThe 3C-like protease (3CL ) is crucial to the replication of SARS-CoV-2, the causative agent of COVID-19, and is the target of several successful drugs including Paxlovid and Xocova. Nevertheless, the emergence of viral resistance underlines the need for alternative drug strategies. 3CL only functions as a homodimer, making the protein-protein interface an attractive drug target.
View Article and Find Full Text PDFCurr Opin Struct Biol
August 2023
Lanthipeptide synthetases are fascinating biosynthetic enzymes that install intramolecular thioether bridges into genetically encoded peptides, typically endowing the peptide with therapeutic properties. The factors that control the macrocyclic topology of lanthipeptides are numerous and remain difficult to predict and manipulate. The key challenge in this endeavor derives from the vast conformational space accessible to the disordered precursor lanthipeptide, which can be manipulated in subtle ways by interaction with the cognate synthetase.
View Article and Find Full Text PDFPhilos Trans R Soc Lond B Biol Sci
February 2023
We present a potential mechanism for emergence of catalytic activity that is essential for survival, from a non-catalytic protein fold. The type B dihydrofolate reductase (DfrB) family of enzymes were first identified in pathogenic bacteria because their dihydrofolate reductase activity is sufficient to provide trimethoprim (TMP) resistance. DfrB enzymes are described as poorly evolved as a result of their unusual structural and kinetic features.
View Article and Find Full Text PDF