Distinguishing the brain mechanisms affected by distinct addictive drugs may inform targeted therapies against specific substance use disorders (SUDs). Here, we explore the function of a drug-associated, transcriptionally repressive transcription factor (TF), ZFP189, whose expression in the nucleus accumbens (NAc) facilitates cocaine-induced molecular and behavioral adaptations. To uncover the necessity of ZFP189-mediated transcriptional control in driving cocaine-induced behaviors, we created synthetic ZFP189 TFs of distinct transcriptional function, including ZFP189, which activates the expression of target genes and exerts opposite transcriptional control to the endogenously repressive ZFP189.
View Article and Find Full Text PDFPAX6 is well known as a transcription factor that drives eye development in animals as widely divergent as flies and mammals. In addition to its localization in eyes, PAX6 expression has been reported in the central nervous system, the pancreas, testes, Merkel cells, nasal epithelium, developing cells of the inner ear, and embryonic submandibular salivary gland. Here we show that PAX6 also appears to be present in the mechanosensory neuromasts of the lateral line system in paedomorphic salamanders of the genus Eurycea.
View Article and Find Full Text PDFBioanalytical assays to measure rhamnose, erythritol, lactulose and sucralose in human urine and plasma were developed to support an indomethacin challenge study for intestinal permeability assessment in healthy participants. The multi-sugar assays utilized 5-μl sample matrix and a simple chemical derivatization with acetic anhydride, followed by RPLC-MS/MS detection. Rhamnose and erythritol quantification was established between 1.
View Article and Find Full Text PDFPreclinical and clinical work has demonstrated altered plasticity and activity in the nucleus accumbens (NAc) under chronic pain states, highlighting critical therapeutic avenues for the management of chronic pain conditions. In this study, we demonstrate that myocyte enhancer factor 2C (MEF2C), a master regulator of neuronal activity and plasticity, is repressed in NAc neurons after prolonged spared nerve injury (SNI). Viral-mediated overexpression of Mef2c in NAc neurons partially ameliorated sensory hypersensitivity and emotional behaviors in mice with SNI, while also altering transcriptional pathways associated with synaptic signaling.
View Article and Find Full Text PDF