Context: Excessive cardiac long-chain fatty acid (LCFA) metabolism/storage causes cardiomyopathy in animal models of type 2 diabetes. Medium-chain fatty acids (MCFAs) are absorbed and oxidized efficiently. Data in animal models of diabetes suggest MCFAs may benefit the heart.
View Article and Find Full Text PDFBackground: Skeletal muscle strength, velocity, and power are markedly reduced in patients with heart failure, which contributes to their impaired exercise capacity and lower quality of life. This muscle dysfunction may be partially because of decreased nitric oxide (NO) bioavailability. We therefore sought to determine whether ingestion of inorganic nitrate (NO3 (-)) would increase NO production and improve muscle function in patients with heart failure because of systolic dysfunction.
View Article and Find Full Text PDFBackground: Dietary phytosterols, plant sterols structurally similar to cholesterol, reduce intestinal cholesterol absorption and have many other potentially beneficial biological effects in humans. Due to limited information on phytosterol levels in foods, however, it is difficult to quantify habitual dietary phytosterol intake (DPI). Therefore, we sought to identify a plasma biomarker of DPI.
View Article and Find Full Text PDFNitric oxide (NO) has been demonstrated to enhance the maximal shortening velocity and maximal power of rodent muscle. Dietary nitrate (NO3(-)) intake has been demonstrated to increase NO bioavailability in humans. We therefore hypothesized that acute dietary NO3(-) intake (in the form of a concentrated beetroot juice (BRJ) supplement) would improve muscle speed and power in humans.
View Article and Find Full Text PDFBackground: Both ezetimibe and phytosterols inhibit cholesterol absorption. We tested the hypothesis that the combination of ezetimibe and phytosterols is more effective than ezetimibe alone in altering cholesterol metabolism.
Methods And Results: Twenty-one mildly hypercholesterolemic subjects completed a randomized, double-blind, placebo-controlled, triple-crossover study.