Publications by authors named "C A Schmuttenmaer"

Transparent conducting oxides have become ubiquitous in modern optoelectronics. However, the number of oxides that are transparent to visible light and have the metallic-like conductivity necessary for applications is limited to a handful of systems that have been known for the past 40 years. In this work, we use hybrid density functional theory and defect chemistry analysis to demonstrate that tri-rutile zinc antimonate, ZnSbO, is an ideal transparent conducting oxide and to identify gallium as the optimal dopant to yield high conductivity and transparency.

View Article and Find Full Text PDF

Time-resolved spectroscopy is an essential part of both fundamental and applied chemical research. Such techniques access light-initiated dynamics on time scales ranging from femtosecond to microsecond. Many techniques falling under this description have been applied to gain significant insight into metal-organic frameworks (MOFs), a diverse class of porous coordination polymers.

View Article and Find Full Text PDF

Terahertz (THz) spectroscopy is a powerful tool for unambiguously extracting complex-valued material properties (e.g., refractive index, conductivity, etc.

View Article and Find Full Text PDF

We report the development of photosensitizing arrays based on conductive metal-organic frameworks (MOFs) that enable light harvesting and efficient charge separation. ZnTTFTB (TTFTB = tetrathiafulvalene tetrabenzoate) MOFs are deposited directly onto TiO photoanodes and structurally characterized by pXRD and EXAFS measurements. Photoinduced interfacial charge transfer dynamics are investigated by combining time-resolved THz spectroscopy and quantum dynamics simulations.

View Article and Find Full Text PDF

Conductive metal organic frameworks (MOFs) represent a promising class of porous crystalline materials that have demonstrated potential in photo-electronics and photocatalytic applications. However, the lack of fundamental understanding on charge transport (CT) mechanism as well as the correlation of CT mechanism with their structure hampered their further development. Herein, we report the direct evidence of CT mechanism in 2D Cu-THQ MOFs and the correlation of temporal and spatial behaviors of charge carriers with their photoconductivity by combining three advanced spectroscopic methods, including time resolved optical and X-ray absorption spectroscopy and terahertz spectroscopy.

View Article and Find Full Text PDF