Publications by authors named "C A Rozzi"

We analyze the internal conversion dynamics within the and excited states of both bare and functionalized porphyrins, which are known to exhibit significantly different time constants experimentally. Through the integration of two complementary approaches, static calculation of per-mode reorganization energies and nonadiabatic molecular dynamics, we achieve a comprehensive understanding of the factors determining the different behavior of the two molecules. We identify the key normal and essential modes responsible for the population transfer between excited states and discuss the efficacy of different statistical and nonstatistical analyses in providing a full physics-based description of the phenomenon.

View Article and Find Full Text PDF

Understanding photoinjection in semiconductors-a fundamental physical process-represents the first step toward devising new opto-electronic devices, capable of operating on unprecedented time scales. Fostered by the development of few-femtosecond, intense infrared pulses, and attosecond spectroscopy techniques, ultrafast charge injection in solids has been the subject of intense theoretical and experimental investigation. Recent results have shown that while under certain conditions photoinjection can be ascribed to a single, well-defined phenomenon, in a realistic multi-band semiconductor like Ge, several competing mechanisms determine the sub-cycle interaction of an intense light field with the atomic and electronic structure of matter.

View Article and Find Full Text PDF

Discerning the impact of the coherent motion of the nuclei on the timing and efficiency of charge transfer at the donor-acceptor interface is essential for designing performance-enhanced optoelectronic devices. Here, we employ an experimental approach using photocurrent detection in coherent multidimensional spectroscopy to excite a donor aromatic macrocycle and collect the charge transferred to a 2D acceptor layer. For this purpose, we prepared a cobalt phthalocyanine-graphene (CoPc-Gr) interface.

View Article and Find Full Text PDF

Internal conversion (IC) is a common radiationless transition in polyatomic molecules. Theory predicts that molecular vibrations assist IC between excited states, and ultrafast experiments can provide insight into their structure-function relationship. Here we elucidate the dynamics of the vibrational modes driving the IC process within the Q band of a functionalized porphyrin molecule.

View Article and Find Full Text PDF

We systematically applied excited-state normal mode analysis to investigate and compare the relaxation and internal conversion dynamics of a free-base porphyrin (BP) with those of a novel functional porphyrin (FP) derivative. We discuss the strengths and limitations of this method and employ it to predict very different dynamical behaviors of the two compounds and to clarify the role of high reorganization energy modes in driving the system toward critical regions of the potential energy landscape. We identify the modes of vibrations along which the energy gap between two excited-state potential energy surfaces within the Q band manifold may vanish and find that the excess energy to reach this "touching" region is significantly reduced in the case of FP (0.

View Article and Find Full Text PDF