Defect engineering in two-dimensional semiconductors has been exploited to tune the optoelectronic properties and introduce new quantum states in the band gap. Chalcogen vacancies in transition metal dichalcogenides in particular have been found to strongly impact charge carrier concentration and mobility in 2D transistors as well as feature subgap emission and single-photon response. In this Letter, we investigate the layer-dependent charge-state lifetime of Se vacancies in WSe_{2}.
View Article and Find Full Text PDFPolyacene analogues, consisting of short acene segments separated by nonbenzenoid rings, offer intriguing electronic properties and magnetic interactions. Pentalene-bridged polyacenes (PPs), in particular, hold promise for enhancing the electrical conductivity and potential open-shell ground states. However, PPs have remained elusive in solution chemistry due to poor solubility and limited synthetic protocols.
View Article and Find Full Text PDFGraphene nanoribbons (GNRs), nanometer-wide strips of graphene, have garnered significant attention due to their tunable electronic and magnetic properties arising from quantum confinement. A promising approach to manipulate their electronic characteristics involves substituting carbon with heteroatoms, such as nitrogen, with different effects predicted depending on their position. In this study, we present the extension of the edges of 7-atom-wide armchair graphene nanoribbons (7-AGNRs) with pyridine rings, achieved on a Au(111) surface via on-surface synthesis.
View Article and Find Full Text PDFUnderstanding single molecular switches is a crucial step in designing and optimizing molecular electronic devices with highly nonlinear functionalities, e.g., gate voltage-dependent current switching.
View Article and Find Full Text PDF