Programming effects of maternal undernutrition on fetal metabolic and cardiovascular systems are well elucidated, yet a detailed characterization of maternal haemodynamics is not available. This study used comprehensive cardiovascular magnetic resonance (CMR) imaging to quantify maternal haemodynamics after 29 days (111-140 days) of late-gestation undernutrition (LGUN) in pregnant sheep. Control ewes received 100% of metabolizable energy requirements (MERs, n = 15), whereas LGUN ewes were globally nutrient restricted to 50% MER (n = 18), with a subset of fetuses undergoing continuous glucose infusion (LGUN + G, n = 6/18).
View Article and Find Full Text PDFA novel method for creating "golden" 3D center-out radial MRI sampling trajectories was developed and analyzed. This method, called ELECTRO (ELECTRic potential energy Optimized), uses repulsive forces to minimize electric potential energy. An objective function [Formula: see text], the electric potential energies of all subsets of consecutive readouts in a 3D radial trajectory, and its reduced form were minimized using a multi-stage optimization strategy.
View Article and Find Full Text PDFPlacental function plays a crucial role in fetal development, as it serves as the primary interface for delivery of nutrients and oxygen from the mother to fetus. Magnetic resonance imaging (MRI) has significantly improved our ability to visualize and understand the placenta's complex structure and function. This review provides an up-to-date examination of the most common and novel placental MRI techniques.
View Article and Find Full Text PDFBackground: Cardiac MRI feature tracking (FT) allows objective assessment of segmental left ventricular (LV) function following a myocardial infarction (MI), but its utilization in sheep, where interventions can be tested, is lacking.
Purpose: To apply and validate FT in a sheep model of MI and describe post-MI LV remodeling.
Study Type: Animal model, longitudinal.
Introduction: The fetal haemodynamic response to acute episodes of hypoxaemia are well characterised. However, how these responses change when the hypoxaemia becomes more chronic in nature such as that associated with fetal growth restriction (FGR), is less well understood. Herein, we utilised a combination of clinically relevant MRI techniques to comprehensively characterize and differentiate the haemodynamic responses occurring during acute and chronic periods of fetal hypoxaemia.
View Article and Find Full Text PDF