Under natural conditions, animals repeatedly encounter the same visual scenes, objects or patterns repeatedly. These repetitions constitute statistical regularities, which the brain captures in an internal model through learning. A signature of such learning in primate visual areas V1 and V4 is the gradual strengthening of gamma synchronization.
View Article and Find Full Text PDFComput Struct Biotechnol J
December 2024
While there is much knowledge about local neuronal circuitry, considerably less is known about how neuronal input is integrated and combined across neuronal networks to encode higher order brain functions. One challenge lies in the large number of complex neural interactions. Neural networks use oscillating activity for information exchange between distributed nodes.
View Article and Find Full Text PDFEmoticons have been considered pragmatic cues that enhance emotional expressivity during computer-mediated communication. Yet, it is unclear how emoticons are processed in ambiguous text-based communication due to incongruences between the emoticon's emotional valence and its context. In this study, we investigated the electrophysiological correlates of contextual influence on the early emotional processing of emoticons, during an emotional congruence judgment task.
View Article and Find Full Text PDFWorld J Microbiol Biotechnol
May 2024
The β-fructofuranosidase enzyme from Aspergillus niger has been extensively used to commercially produce fructooligosaccharides from sucrose. In this study, the native and an engineered version of the β-fructofuranosidase enzyme were expressed in Pichia pastoris under control of the glyceraldehyde-3-phosphate dehydrogenase promoter, and production was evaluated in bioreactors using either dissolved oxygen (DO-stat) or constant feed fed-batch feeding strategies. The DO-stat cultivations produced lower biomass concentrations but this resulted in higher volumetric activity for both strains.
View Article and Find Full Text PDFPhase entrainment of cells by theta oscillations is thought to globally coordinate the activity of cell assemblies across different structures, such as the hippocampus and neocortex. This coordination is likely required for optimal processing of sensory input during recognition and decision-making processes. In quadruple-area ensemble recordings from male rats engaged in a multisensory discrimination task, we investigated phase entrainment of cells by theta oscillations in areas along the corticohippocampal hierarchy: somatosensory barrel cortex (S1BF), secondary visual cortex (V2L), perirhinal cortex (PER), and dorsal hippocampus (dHC).
View Article and Find Full Text PDF