Supriya Mallick Malignant gliomas are the most common primary malignant brain tumors and are typically treated with maximal safe surgical resection followed by chemoradiation. One of the unintended effects of radiation is depletion of circulating lymphocyte pool, which has been correlated with inferior overall survival outcomes. A comprehensive and systematic searches of the PubMed, Cochrane Central, and Embase databases were done to assess the studies that have reported radiation-related lymphopenia in high-grade gliomas.
View Article and Find Full Text PDF: Neuroinflammation is a primary feature of Alzheimer's disease (AD), for which an increasing number of drugs have been specifically developed. The present study aimed to define the therapeutic impact of a specific subpopulation of T cells that can suppress excessive inflammation in various immune and inflammatory disorders, namely, CD4CD25Foxp3 regulatory T cells (Tregs). : To generate Aβ antigen-specific Tregs (Aβ Tregs), Aβ 1-42 peptide was applied and subsequent splenocyte culture.
View Article and Find Full Text PDFMajor impediments to conveyance of intravenously administered drugs to tumors are biofouling, opsonization, and rapid clearance from the circulation by macrophages and reticuloendothelial phagocytes. Cloaking nanoparticles with stealth epilayers partly overcomes these hurdles but it also foils interactions with tumor cells. Here, we describe the synthesis, characterization, and validation of smart gold nanorods (GNRs) that spontaneously transform from inert passengers in the blood stream to active cell-penetrating nanoparticles within tumors to potently sensitize tumors to radiation therapy.
View Article and Find Full Text PDFUntil now, a swim-up or microchip-based method has been mainly utilized for separating normal sperm for use in assisted reproductive technology. However, it requires excessive sorting time due to preprocessing and collects a limited number of motile sperms. To improve this process, we propose a gravity-fed high motility sperm sorting device that utilizes the rheotaxis of sperm, which minimizes separation time and improves throughput.
View Article and Find Full Text PDFBackground: At present, the colonoscopy is the most common method of screening for colorectal cancer. However, endoscopists still encounter difficulties with intubation, primarily due to the structural diversity (e.g.
View Article and Find Full Text PDFWe present a negative dielectrophoresis (n-DEP)-based cell separation system for high-throughput and high-efficiency cell separation. To achieve a high throughput, the proposed system comprises macro-sized channel and cantilever-type electrode (CE) arrays (L × W × H = 150 µm × 500 µm × 50 µm) to generate n-DEP force. For high efficiency, double separation modules, which have macro-sized channels and CE arrays in each separation module, are employed.
View Article and Find Full Text PDFPreliminary studies have suggested that the reactive oxygen species (ROS) scavenger N-acetyl-L-cysteine (NAC) may be effective in inhibiting the growth of pancreatic cancer cells. In-depth cellular and molecular analyses were carried out to determine NAC's mode of action in inhibiting the growth of a well-characterized pancreatic cancer cell line (AsPC-1). Standardized assays were used to monitor cellular growth, apoptosis, levels of ROS, cellular senescence, migration, and invasiveness.
View Article and Find Full Text PDFThe metastatic potential of cells is an important parameter in the design of optimal strategies for the personalized treatment of cancer. Using atomic force microscopy (AFM), we show, consistent with previous studies conducted in other types of epithelial cancer, that ovarian cancer cells are generally softer and display lower intrinsic variability in cell stiffness than non-malignant ovarian epithelial cells. A detailed examination of highly invasive ovarian cancer cells (HEY A8) relative to their less invasive parental cells (HEY), demonstrates that deformability is also an accurate biomarker of metastatic potential.
View Article and Find Full Text PDFUnder the assumption that separation efficiencies are mainly affected by the velocity of flow-induced circulation due to buffer injection in a pendent drop, this paper describes an analysis of the separation efficiency of a droplet-based magnetically activated cell separation (DMACS) system. To investigate the velocity of the flow-induced circulation, we supposed that numerous flows in a pendent drop could be considered as a "theoretically normalized" flow (or conceptually normalized flow, CNF) based on the Cauchy-Goursat theorem. With the morphological characteristics (length and duration time) of a pendent drop depending on the initial volume, we obtained the velocities of the CNF.
View Article and Find Full Text PDFIn this paper, we successfully separated malignant human breast cancer epithelial cells (MCF 7) from healthy breast cells (MCF 10A) and analyzed the main parameters that influence the separation efficiency with an advanced dielectrophoresis (DEP)-activated cell sorter (DACS). Using the efficient DACS, the malignant cancer cells (MCF 7) were isolated successfully by noninvasive methods from normal cells with similar cell size distributions (MCF 10A), depending on differences between their material properties such as conductivity and permittivity, because our system was able to discern the subtle differences in the properties by generating continuously changed electrical field gradients. In order to evaluate the separation performance without considering size variations, the cells collected from each outlet were divided into size-dependent groups and counted statistically.
View Article and Find Full Text PDFWe report findings regarding otolaryngologist-confirmed rhinitis, current exposure to MWF aerosols, fungi, and endotoxins for workers in a plant manufacturing automobile piston rings. Questionnaire data showed that 61.5% of 187 workers exhibited rhinitis-related symptoms.
View Article and Find Full Text PDFThe main objective of this study was to determine the association between synthetic metalworking fluid (MWF) and rhinitis-related symptoms. At a plant manufacturing piston rings for automobiles, we interviewed grinders (19) and manufacturing workers (142) in operations where synthetic or semisynthetic MWF is handled, and administrative office workers (44) regarding the principal symptoms of rhinitis (nasal stuffiness, runny nose, anosmia, nasal itchiness, rhinorrhea, headache, epistaxis, and post-nasal drip). In addition, we assessed the current exposure of workers handling MWF to MWF aerosols, fungi, and endotoxins.
View Article and Find Full Text PDFWe developed a novel method to fabricate a crab-like microrobot that can actuate for a long period in a physiological condition. The microrobot backbone was built with a biocompatible and elastic material-polydimethylsiloxane (PDMS)-by using a specially designed 3D molding aligner, and consisted of three strips of PDMS "legs" connected across a "body." Cardiomyocytes were then plated on the grooved top surface of the backbone, resulting in a high concentration of pulsating cells.
View Article and Find Full Text PDFA label-free microfluidic method for separation and enrichment of human breast cancer cells is presented using cell adhesion as a physical marker. To maximize the adhesion difference between normal epithelial and cancer cells, flat or nanostructured polymer surfaces (400 nm pillars, 400 nm perpendicular, or 400 nm parallel lines) were constructed on the bottom of polydimethylsiloxane (PDMS) microfluidic channels in a parallel fashion using a UV-assisted capillary moulding technique. The adhesion of human breast epithelial cells (MCF10A) and cancer cells (MCF7) on each channel was independently measured based on detachment assays where the adherent cells were counted with increasing flow rate after a pre-culture for a period of time (e.
View Article and Find Full Text PDFConf Proc IEEE Eng Med Biol Soc
March 2008
Diagnosis using a flexible endoscope in gastro-intestinal tract becomes very important. In addition, the endoscope is a basic tool of diagnosis and treatment for digestive organ. However, the operation of endoscope is very labor intensive work and gives patients some pains.
View Article and Find Full Text PDFThis paper presents a hybrid micropump actuated by the up-down motion of a dome shaped cell-polymer membrane composite. The contractile force induced from self-beating cardiomyocytes cultured on the membrane causes shrinkage and relaxation of a microchamber, leading to a flow in a microchannel. Flow direction is controlled by the geometry of diffuser/nozzle in the microchannel.
View Article and Find Full Text PDFTo reduce the problem of cell loss due to adhesion, one of the basic phenomena in microchannel, we proposed the droplet-based magnetically activated cell separator (DMACS). Based on the platform of the DMACS-which consists of permanent magnets, a coverslip with a circle-shaped boundary, and an injection tube-we could collect magnetically (CD45)-labeled (positive) cells with high purity and minimize cell loss due to adhesion. To compare separation efficiency between the MACS and the DMACS, the total number of cells before and after separation with both the separators was counted by flow cytometry.
View Article and Find Full Text PDFProc Inst Mech Eng H
May 2007
Recently, the capsule endoscope has been highlighted for the patient's convenience and the possibility of application in the small intestine. However, the capsule endoscope has some limitations in obtaining an image of the digestive organ because its movement depends only on the peristaltic motion. In order to solve these problems, it is necessary to determine the locomotive mechanism of the capsule endoscope.
View Article and Find Full Text PDFQuantitatively analysis of the contractility of cardiomyocytes is important for understanding the mechanism of heart failure as well as the molecular alterations in diseased heart cells. This paper presents a realistic computational model, which considers the three-dimensional fluid-structural interactions (FSI), to quantify the contractile force of cardiomyocytes on hybrid biopolymer microcantilevers. Prior to this study, only static modeling of the microscale cellular force has been reported.
View Article and Find Full Text PDFConf Proc IEEE Eng Med Biol Soc
October 2012
In order to develop the cell based robot, we presented a micro-mechanical force measurement system for the biological muscle actuators, which utilize glucose as a power source for potential application in digestive organ. The proposed system is composed of a micro-manipulator, a force transducer with a glass probe, a signal processor, an inverted microscope and video recoding system. Using this measurement system, the contractile force and frequency of the cardiac myocytes were measured in real time and the magnitudes of the contractile force of each cardiac myocyte under different conditions were compared.
View Article and Find Full Text PDFConf Proc IEEE Eng Med Biol Soc
October 2012
We have introduced well-defined nanopillar arrays of polyethylene glycol (PEG) as a platform for studying the adhesion and growth of cultured cardiomyocytes. The nanopillar arrays were fabricated by using a simple molding technique involving the placement of a patterned polyurethane acrylate mold on top of a drop-dispensed ultraviolet (UV) curable PEG polymer followed by UV exposure and mold removal. The adhesion and growth of cardiomyocytes turned out be guided by an external nanotopography, which has been characterized in terms of cell morphology and cytoskeletal arrangement.
View Article and Find Full Text PDFConf Proc IEEE Eng Med Biol Soc
October 2012
We successfully demonstrate that a thermally actuated reversible hydrogel, the poly N-Isopropylacrylamide (PNIPAAm), based clampers holds the intestines of a pig during the inchworm motion of microrobot. Although there are no direct relationship between hydro affinity and friction force, we found the significant friction force difference according to the surface condition change of PNIPAAm hydrogel. On the small intestine of a pig, a clamping mechanism was realized based on simple switching hydrophobic/hydrophilic surface conditions of PNIPAAm due to heating/cooling.
View Article and Find Full Text PDFConf Proc IEEE Eng Med Biol Soc
June 2007
A microrobotic force sensing system is used to characterize the mechanical properties of the chorion of zebrafish embryos and quantitate the mechanical property differences of the chorion at different developmental stages. Quantitative relationships between applied forces and chorion structural deformations are established for various developmental stages. The measured penetration forces for puncturing chorion at the blastula stage are 1.
View Article and Find Full Text PDFIEEE Trans Nanobioscience
June 2006
During early development, the chorion envelope of the zebrafish embryo undergoes a thinning process called "chorion softening," which has so far only been characterized chemically. In this study, a micromechanical force sensing system was used to characterize and quantitate mechanical modifications of the zebrafish embryo chorion during early development. Quantitative relationships between applied forces and chorion structural deformations were established at various embryonic stages.
View Article and Find Full Text PDFWe introduce well-defined nanopillar arrays of a poly(ethylene glycol) (PEG) hydrogel as a cell culture platform to guide a 3D construct of primary rat cardiomyocytes in vitro for potential tissue engineering applications. Ultraviolet (UV)-assisted capillary lithography was used to fabricate highly uniform approximately 150 nm PEG pillars with approximately 400 nm height. It was found that cell adhesion was significantly enhanced on PEG nanopillars (132 +/- 29 cells/mm2) compared to that on the bare PEG control (39 +/- 17 cells/mm2) (p < 0.
View Article and Find Full Text PDF