Publications by authors named "Byungkwon Kim"

Thymoquinone (TQ), a bioactive compound derived from black cumin seeds, is renowned for its potent anti-obesity and anti-diabetic properties. Due to the stability challenges of TQ, it has predominantly been utilized in oil formulations. This study aimed to enhance the stability of TQ and investigated the impact of consuming insoluble fiber from black cumin seeds on restoring antioxidant function compromised by diabetes and improving hyperglycemia management.

View Article and Find Full Text PDF

The current study aimed to investigate the physicochemical properties of the natural eggshell membrane (NEM) and its protective effects against HO-induced oxidative stress in human chondrocytes (SW-1353). Bioactive components from NEM related to cartilage were profiled, consisting of 1.1 ± 0.

View Article and Find Full Text PDF

Electrochemical measurements involving single nanoparticles have attracted considerable research attention. In recent years, various studies have been conducted on single-entity electrochemistry (SEE) for the in-depth analyses of catalytic reactions. Although, several electrocatalysts have been developed for H energy production, designing innovative electrocatalysts for this purpose remains a challenging task.

View Article and Find Full Text PDF

Redox-active organic compounds gather significant attention for their potential application as electrodes in alkali ion batteries, owing to the structural versatility, environmental friendliness, and cost-effectiveness. However, their practical applications of such compounds are impeded by insufficient active sites with limited capacity, dissolution in electrolytes, and sluggish kinetics. To address these issues, a naphthol group-containing triarylamine polymer, namely poly[6,6'-(phenylazanediyl)bis(naphthol)] (poly(DNap-OH)) is rationally designed and synthesized, via oxidative coupling polymerization.

View Article and Find Full Text PDF

The complete mitochondrial genome of Lavesque, Daffe, Bonifácio & Hutchings, 2017, was 15,891 bp in length with a GC content of 41%, comprising 13 protein-coding genes, 2 ribosomal RNA genes, and 22 transfer RNA genes. The maximum-likelihood tree showed the closest relationship between and .

View Article and Find Full Text PDF

Cloud point temperature () is a thermal index used to define the phase transition of thermoresponsive polymers. In this study, we used electrochemical techniques to obtain an electrochemical cloud point temperature () that exhibits the more accurate phase transition temperature and can replace . Thermoamperometry on an ultramicroelectrode was conducted with a poly(arylene ether sulfone) (PES) as a model system to obtain a current-temperature (-) curve in real time; the of the PES was determined from the - curve.

View Article and Find Full Text PDF

Nanoparticles are used in various fields, including fuel cells, energy conversion devices, and sensors, because of their large surface area and excellent catalytic properties. Although various methods of synthesizing nanoparticles are available, the most popular is the solution-phase reduction of metal ions. Electrodeposition is a method of reducing metal ions in solution and is widely used because of its various advantages.

View Article and Find Full Text PDF
Article Synopsis
  • Aromatic polyimides (PIs) are valued for their excellent thermal and mechanical properties, but their precursors, polyamic acids (PAAs), face issues like moisture and heat-induced depolymerization, which can affect PIs' quality.
  • To enhance quality control in research and industry, a new, quick method has been developed to monitor PAA depolymerization by measuring changes in solution viscosity using electrochemistry.
  • This approach involves heating a PAA solution to accelerate depolymerization and using cyclic voltammetry to track viscosity changes, providing a model to study dynamic viscosity in various polymers.
View Article and Find Full Text PDF

Single-entity analysis is an important research topic in electrochemistry. To date, electrode collisions and subsequent electrode-particle interactions have been studied for many types of nano-objects, including metals, polymers, and micelles. Here we extend this nano-object electrochemistry analysis to Pickering emulsions for the first time.

View Article and Find Full Text PDF

We synthesized a new poly(triphenylamine), having a hyperbranched structure, and employed it in lithium-ion batteries as an organic cathode material. Two types of monomers were prepared with hydroxyl groups and nitro leaving groups, activated by a trifluoromethyl substituent, and then polymerized via the nucleophilic aromatic substitution reaction. The reactivity of the monomers differed depending on the number of hydroxyl groups and the AB type monomer with one hydroxyl group successfully produced poly(triphenylamine).

View Article and Find Full Text PDF

Oxide scales often formed on the surface of stainless steel, and it is of high interest to descale the surface oxide effectively and environment-friendly during steel smelting and engineering processing. It is generally done by treating the oxide layer under strong and harsh mixed acid (HNO + HF) conditions or in a strong molten salt (NaOH + NaNO) environment at high temperatures, while the generation of very harmful and environmentally hazardous gases, such as NO , is inevitable. A novel, simple, fast, and environment-friendly electrochemical method at ambient temperature is proposed in this research to remove the oxide scale from the stainless steel surface using an ionic liquid with a small amount of HCl.

View Article and Find Full Text PDF

This research introduces a method to directly detect serotonin in a single platelet through single-entity electrochemistry. Platelets isolated from human blood were analyzed by cyclic voltammetry and current-time measurements. When a single platelet collides with an ultramicroelectrode, serotonin inside the platelet is oxidized at the electrode surface, and an anodic current peak is consequently observed during measurement.

View Article and Find Full Text PDF

In recent years, rapid progress in the field of single-entity electrochemistry (SEE) has opened a novel exploratory area in the field of analytical and electrochemistry. SEE is a method of studying the behavior of particles at the single particle level, which yields important information on the diffusion coefficient, individual particle size, size distribution, catalytic activity, collision frequency, and internal substances of the particles. Various types of particles have been studied through SEE.

View Article and Find Full Text PDF

The quantitative analysis of human platelets is important for the diagnosis of various hematologic and cardiovascular diseases. In this article, we present a stochastic particle impact electrochemical (SPIE) approach for human platelets with fixation (F-HPs). Carboxylate-functionalized polystyrene particles (PSPs) are studied as well as a standard platform of SPIE-F-HPs.

View Article and Find Full Text PDF

Solvent-, acidity-, and redox-responsive thione(thiol)-disulfide interconversion were achieved by a dinuclear copper(ii) complex bearing a bis(thiosemicarbazone) (bTSC) ligand. The role of copper(ii) ion coordination was rationalized by parallel comparison with a bare bTSC ligand and zinc(ii) bTSC complexes under identical reaction conditions.

View Article and Find Full Text PDF

Transition metal-doped SnO nanoparticles (TM-SnO) were synthesized by applying a thermos-synthesis method, which first involved doping SnO with Sb and then with transition metals (TM = Cr, Mn, Fe, or Co) of various concentrations to enhance a catalytic effect of SnO. The doped particles were then analyzed by using various surface analysis techniques such as transmission electron microscopy (TEM), X-ray diffraction (XRD), scanning transmission X-ray microscopy (STXM), and high-resolution photoemission spectroscopy (HRPES). We evaluated the catalytic effects of these doped particles on the oxidation of L-cysteine (Cys) in aqueous solution by taking electrochemical measurements and on the photocatalytic oxidation of Cys by using HRPES under UV illumination.

View Article and Find Full Text PDF

Herein, a study on a new lower critical solution temperature (LCST) polymer in an organic solvent by an electrochemical technique has been reported. The phase-transition behavior of poly(arylene ether sulfone) (PAES) was examined on 1,2-dimethoxyethane (DME). At a temperature above the LCST point, polymer molecules aggregated to create polymer droplets.

View Article and Find Full Text PDF

Blood tests (e.g., red blood cell (RBC) count) are crucial for detecting, diagnosing, and monitoring the progression of blood disorders.

View Article and Find Full Text PDF

In order to compare the catalytic activities of reduced graphene oxide (rGO), graphene oxide (GO), and graphene, we conducted oxidation of 2-aminothiophenol (2-ATP) and reduction of nitrobenzene (NB) in their presence by using high-resolution photoemission spectroscopy (HRPES). In addition, we determined conversion rates of CO to CO in the presence of these catalysts by performing a residual gas analyzer (RGA) under a UHV condition, Orange II and methylene blue degradations UV-vis spectrophotometry, and electrochemistry (EC) measurements in an aqueous solution, as well as by obtaining cyclic voltammograms and determining the change of the condition of electrodes before and after the oxidation of 2-ATP. We found that we can successively fabricate GO (oxidation) and graphene (reduction) from rGO by controlling the oxidation or reduction procedure time and then clearly comparing the critical properties among them as we perform various oxidation and reduction activities.

View Article and Find Full Text PDF

We detected single living bacterial cells on ultramicroelectrode (UME) using a single-particle collision method and optical microscopic methods. The number of collision events involving the bacterial cells indicated in current-time (i-t) curves corresponds to the number of bacterial cells (i.e.

View Article and Find Full Text PDF

We have developed a simple and selective method for the electrochemical detection of hydrazine (HZ) using poly(dopamine) (pDA)-modified indium tin oxide (ITO) electrodes. Modification with pDA was easily achieved by submerging the ITO electrode in a DA solution for 30 min. The electrocatalytic oxidation of HZ on the pDA-modified ITO electrode was measured by cyclic voltammetry.

View Article and Find Full Text PDF

We report here the electrochemistry of emulsion droplets by observing single emulsion droplet collisions with selective electrochemical reduction on an ultramicroelectrode (UME). With appropriately applied potentials at an UME, we can observe the electrochemical effects of single collision signals from the complete electrolysis of single emulsion droplets, or selective electrolysis of redox species in single emulsion droplets. This was observed with nitrobenzene (NB), 7,7,8,8-tetracyanoquinodimethane (TCNQ), and ionic liquid.

View Article and Find Full Text PDF

We describe a method to produce electrogenerated chemiluminescence (ECL) in water using a family of highly hydrophobic polycyclic aromatic hydrocarbon (PAH) luminophores and boron dipyrromethene (BODIPY). This method is based on an oil-in-water emulsion system. Various PAHs (rubrene, 9,10-diphenylanthracene, pyrene, or perylene) and BODIPY were trapped in a toluene and tri-n-propylamine mixed oil-in-water emulsion using an ionic liquid as the supporting electrolyte and emulsifier.

View Article and Find Full Text PDF

We provide evidence of single attoliter oil droplet collisions at the surface of an ultra-microelectrode (UME) by the observation of simultaneous electrochemical current transients (i-t curves) and electrogenerated chemiluminescent (ECL) transients in an oil/water emulsion. An emulsion system based on droplets of toluene and tri-n-propylamine (2:1 v/v) emulsified with an ionic liquid and suspended in an aqueous continuous phase was formed by ultrasonification. When an ECL luminophore, such as rubrene, is added to the emulsion droplet, stochastic events can be tracked by observing both the current blips from oxidation at the electrode surface and the ECL blips from the follow-up ECL reaction, which produces light.

View Article and Find Full Text PDF

We describe the fabrication of a nanometer-size electrode based on an insulating TiO2 film and a metal nanoparticle (NP). The TiO2 film is deposited on the conducting Pt surface of an ultramicroelectrode (UME) to block electron transfer (ET) to solution species. The film thickness is, however, thin enough to enable tunneling to Pt NPs; thus, the subsequent contact of metal NP to the TiO2 film restores the ET to solution species solely on the NP surface via facile electron tunneling.

View Article and Find Full Text PDF