Publications by authors named "Byungchul Jang"

Platinum plays a crucial role in the field of basic electrochemistry, regeneration energy, and so on. Pt nanomaterials with well-controlled size and shape could be easily obtained from metal-oleate complexes. However, these nanoparticles (NPs) were electrochemically inactive because of the attached organic residue.

View Article and Find Full Text PDF

There is a growing need to improve the electrical conductivity of the cathode and to suppress the rapid capacity decay during cycling in lithium-sulfur (Li-S) batteries. This can be achieved by developing facile methods for the synthesis of novel nanostructured carbon materials that can function as effective cathode hosts. In this Article, we report the scalable synthesis of ordered mesoporous carbon nanosheets (OMCNS) via the etching of self-assembled iron oxide/carbon hybrid nanosheets (IO-C NS), which serve as an advanced sulfur host for Li-S batteries.

View Article and Find Full Text PDF

It is still a challenging task to develop a facile and scalable process to synthesize porous hybrid materials with high electrochemical performance. Herein, a scalable strategy is developed for the synthesis of few-layer MoS2 incorporated into hierarchical porous carbon (MHPC) nanosheet composites as anode materials for both Li- (LIB) and Na-ion battery (SIB). An inexpensive oleylamine (OA) is introduced to not only serve as a hinder the stacking of MoS2 nanosheets but also to provide a conductive carbon, allowing large scale production.

View Article and Find Full Text PDF

One-dimensional iron-oxide/carbon hybrid nano tubular structures were synthesized via anodic aluminium oxide (AAO) template method. Highly unform iron oxide nanoparticles and carbon structures were formed simultaneously on the wall surface of the AAO template from an iron-oleate precursor by solventless thermal decomposition method. The 1D iron-oxide/carbon nanostructures were obtained after removing the AAO template.

View Article and Find Full Text PDF

A composite of modified graphene and LiFePO4 has been developed to improve the speed of charging-discharging and the cycling stability of lithium ion batteries using LiFePO4 as a cathode material. Chemically activated graphene (CA-graphene) has been successfully synthesized via activation by KOH. The as-prepared CA-graphene was mixed with LiFePO4 to prepare the composite.

View Article and Find Full Text PDF

Rattle-structured nanomaterials composed of a gold nanorod in a mesoporous silica nanocapsule (AuNR@mSiO(2)) were prepared by a novel solution-based consecutive process. The drug-loading properties of the nanomaterial and regrowth control of the core nanoparticles were also studied.

View Article and Find Full Text PDF

Extensive applications of rechargeable lithium-ion batteries (LIBs) to various portable electronic devices and hybrid electric vehicles result in the increasing demand for the development of electrode materials with improved electrochemical performance including high energy, power density, and excellent cyclability, while maintaining low production cost. Here, we present a direct synthesis of ferrite/carbon hybrid nanosheets for high performance lithium-ion battery anodes. Uniform-sized ferrite nanocrystals and carbon materials were synthesized simultaneously through a single heating procedure using metal-oleate complex as the precursors for both ferrite and carbon.

View Article and Find Full Text PDF

Transforming growth factor-beta1 (TGF-beta1) is an important mediator of glomerulosclerosis and tubulointerstitial fibrosis in renal diseases. We designed ribbon-type antisense oligos of TGF-beta1, TGF-beta1 RiAS, and combined them with a short peptide of the nuclear localization signal to form a transfection complex of DNA/peptide/liposomes (DPL) for enhanced cellular uptake. When H4IIE cells were transfected with TGF-beta1 RiAS, the level of TGF-beta1 mRNA was reduced by >70%.

View Article and Find Full Text PDF