Specific antibodies that possess a subnanomolar affinity are very difficult to obtain from human naïve immunoglobulin repertoires without the use of lengthy affinity optimization procedures. Here, we designed a hierarchical phage-displayed antibody library system to generate an enormous diversity of combinatorial Fab fragments (6×10(17)) and attempted to isolate high-affinity Fabs against the human epidermal growth factor receptor (EGFR). A primary antibody library, designated HuDVFab-8L, comprising 4.
View Article and Find Full Text PDFBackground: Expression of recombinant antibodies and their derivatives fused with other functional molecules such as alkaline phosphatase in Escherichia coli is important in the development of molecular diagnostic reagents for biomedical research.
Methods: We investigated the possibility of applying a well-known Fos-Jun zipper to dimerize V(H) and V(L) fragments originated from the Fab clone (SP 112) that recognizes pyruvate dehydrogenase complex-E2 (PDC-E2), and demonstrated that the functional zipFv-112 and its alkaline phosphatase fusion molecules (zipFv-AP) can be produced in the cytoplasm of Origami(DE3) trxB gor mutant E. coli strain.
Light (L) chain shuffling is routinely used to analyze optimal L chains that pair with a specific heavy (Fd or H) chain, which ultimately leads to in vitro affinity maturation of a particular antibody. One of the major drawbacks to this procedure is that L chain libraries have to be created for each distinct H chain, which involves complicated cloning procedures. Herein, we designed of the dual-vector system-III (DVS-III), which is composed of a set of pLf1T-3 phagemid and pHg3A-3 plasmid, for L chain shuffling of any given human Fab antibody via phage display technology.
View Article and Find Full Text PDFThe generation of functional recombinant antibodies from hybridomas is necessary for antibody engineering. However, this is not easily accomplished due to high levels of aberrant heavy and light chain mRNAs, which require a highly selective technology that has proven complicated and difficult to operate. Herein, we attempt to use an alkaline phosphate (AP)-fused form of single-chain variable fragment (scFv) for the simple identification of a hybridoma-derived, functional recombinant antibody.
View Article and Find Full Text PDFThe dual-vector system-II (DVS-II), which allows efficient display of Fab antibodies on phage, has been reported previously, but its practical applicability in a phage-displayed antibody library has not been verified. To resolve this issue, we created two small combinatorial human Fab antibody libraries using the DVS-II, and isolation of target-specific antibodies was attempted. Biopanning of one antibody library, termed DVFAB-1L library, which has a 1.
View Article and Find Full Text PDFTo resolve some of the technical limitations in a phage-displayed Fab library, we have designed two dual-vector systems, DVS-I and DVS-II, composed of a set of replicon-compatible plasmid (pLA-1 or pLT-2) for producing soluble L chain fragments and phagemid (pHf1g3T-1 or pHf1g3A-2) for expressing Fd (V(H)+C(H1))-DeltapIII fusion molecules as well as a genotype-phenotype linkage. Compared to the DVS-I (pLA-1 and pHf1g3T-1), the DVS-II (pLT-2 and pHf1g3A-2) showed stable transformation efficiency regardless of the order of the vectors introduced into the host cells. In addition, expression of soluble Fab molecules with antigen-binding reactivity, recombinant phage titer and display level of functional Fab-DeltapIII on the phage progenies of the DVS-II were comparable with a conventional phage display system using a single phagemid vector.
View Article and Find Full Text PDFThe effect of utilizing Ex12 helper phage, a mutant M13K07 helper having two amber codons at the gIII (gIII-amber), in combination with Escherichia coli host strains belonging to the supE genotype on improving the phage display of antibody fragments was investigated. Because of an inefficient read-through of the UAG codons, Ex12 helper phage produced approximately 10% of the intracellular wt pIII in the supE host cells compared to M13K07. The phage progenies rescued from the supE XL-1 Blue MRF' strain carrying the recombinant phagemid, pCMTG-SP112, by Ex12 helper phage displayed both antibody-DeltapIII fusion and wt pIII at a ratio of 1:1.
View Article and Find Full Text PDF