Publications by authors named "Byung-Ouk Park"

Cancer-associated thrombosis is the second-leading cause of mortality in patients with cancer and presents a poor prognosis, with a lack of effective treatment strategies. NAD(P)H quinone oxidoreductase 1 (NQO1) increases the cellular nicotinamide adenine dinucleotide (NAD) levels by accelerating the oxidation of NADH to NAD, thus playing important roles in cellular homeostasis, energy metabolism, and inflammatory responses. Using a murine orthotopic 4T1 breast cancer model, in which multiple thrombi are generated in the lungs at the late stage of cancer development, we investigated the effects of regulating the cellular NAD levels on cancer-associated thrombosis.

View Article and Find Full Text PDF

Intracellular antibodies have become powerful tools for imaging, modulating and neutralizing endogenous target proteins. Here, we describe an optogenetically activated intracellular antibody (optobody) consisting of split antibody fragments and blue-light inducible heterodimerization domains. We expanded this optobody platform by generating several optobodies from previously developed intracellular antibodies, and demonstrated that photoactivation of gelsolin and β2-adrenergic receptor (β2AR) optobodies suppressed endogenous gelsolin activity and β2AR signaling, respectively.

View Article and Find Full Text PDF

Spatiotemporal control of gene expression or labeling is a valuable strategy for identifying functions of genes within complex neural circuits. Here, we develop a highly light-sensitive and efficient photoactivatable Flp recombinase (PA-Flp) that is suitable for genetic manipulation in vivo. The highly light-sensitive property of PA-Flp is ideal for activation in deep mouse brain regions by illumination with a noninvasive light-emitting diode.

View Article and Find Full Text PDF

Pediatric brain tumors are highly associated with epileptic seizures. However, their epileptogenic mechanisms remain unclear. Here, we show that the oncogenic BRAF somatic mutation p.

View Article and Find Full Text PDF

Pulsatile actomyosin contractility, important in tissue morphogenesis, has been studied mainly in apical but less in basal domains. Basal myosin oscillation underlying egg chamber elongation is regulated by both cell-matrix and cell-cell adhesions. However, the mechanism by which these two adhesions govern basal myosin oscillation and tissue elongation is unknown.

View Article and Find Full Text PDF

Cells migrate by directing Ras-related C3 botulinum toxin substrate 1 (Rac1) and cell division control protein 42 (Cdc42) activities and by polymerizing actin toward the leading edge of the cell. Previous studies have proposed that this polarization process requires a local positive feedback in the leading edge involving Rac small GTPase and actin polymerization with PI3K likely playing a coordinating role. Here, we show that the pleckstrin homology and RhoGEF domain containing G3 (PLEKHG3) is a PI3K-regulated Rho guanine nucleotide exchange factor (RhoGEF) for Rac1 and Cdc42 that selectively binds to newly polymerized actin at the leading edge of migrating fibroblasts.

View Article and Find Full Text PDF

Intracellular membrane trafficking, which is involved in diverse cellular processes, is dynamic and difficult to study in a spatiotemporal manner. Here we report an optogenetic strategy, termed light-activated reversible inhibition by assembled trap of intracellular membranes (IM-LARIAT), that uses various Rab GTPases combined with blue-light-induced hetero-interaction between cryptochrome 2 and CIB1. In this system, illumination induces a rapid and reversible intracellular membrane aggregation that disrupts the dynamics and functions of the targeted membrane.

View Article and Find Full Text PDF

Mammalian tissue size is maintained by slow replacement of de-differentiating and dying cells. For adipocytes, key regulators of glucose and lipid metabolism, the renewal rate is only 10% per year. We used computational modeling, quantitative mass spectrometry, and single-cell microscopy to show that cell-to-cell variability, or noise, in protein abundance acts within a network of more than six positive feedbacks to permit pre-adipocytes to differentiate at very low rates.

View Article and Find Full Text PDF

Adipogenesis, or the conversion of proliferating preadipocytes into nondividing adipocytes, is an important part of the vertebrate weight-maintenance program. It is not yet understood how and when an irreversible transition occurs into a distinct state capable of accumulating lipid. Here, we use single-cell fluorescence imaging to show that an all-or-none switch is induced before lipid accumulation occurs.

View Article and Find Full Text PDF

Despite large cell-to-cell variations in the concentrations of individual signaling proteins, cells transmit signals correctly. This phenomenon raises the question of what signaling systems do to prevent a predicted high failure rate. Here we combine quantitative modeling, RNA interference, and targeted selective reaction monitoring (SRM) mass spectrometry, and we show for the ubiquitous and fundamental calcium signaling system that cells monitor cytosolic and endoplasmic reticulum (ER) Ca(2+) levels and adjust in parallel the concentrations of the store-operated Ca(2+) influx mediator stromal interaction molecule (STIM), the plasma membrane Ca(2+) pump plasma membrane Ca-ATPase (PMCA), and the ER Ca(2+) pump sarco/ER Ca(2+)-ATPase (SERCA).

View Article and Find Full Text PDF

Calmodulin (CaM), a ubiquitous calcium-binding protein, regulates diverse cellular functions by modulating the activity of a variety of proteins. However, little is known about how CaM directly regulates transcription. Screening of an Arabidopsis cDNA expression library using horseradish peroxidase-conjugated calmodulin as a probe identified a calmodulin-binding NAC protein (CBNAC).

View Article and Find Full Text PDF

Many signaling, cytoskeletal, and transport proteins have to be localized to the plasma membrane (PM) in order to carry out their function. We surveyed PM-targeting mechanisms by imaging the subcellular localization of 125 fluorescent protein-conjugated Ras, Rab, Arf, and Rho proteins. Out of 48 proteins that were PM-localized, 37 contained clusters of positively charged amino acids.

View Article and Find Full Text PDF
Article Synopsis
  • Calmodulin (CaM) is involved in regulating various cellular functions, and this study identifies a new transcription factor, OsCBT, in rice that binds to CaM.
  • OsCBT has a distinct structure with a DNA-binding domain and multiple CaM-binding motifs and demonstrates specific DNA binding.
  • The study reveals that OsCBT activates gene expression but its function is inhibited when CaM is present, suggesting a complex regulatory role for CaM in transcription.
View Article and Find Full Text PDF

Hundreds of proteins involved in signaling pathways contain a Ca(2+)-dependent membrane-binding motif called the C2-domain. However, no small C2-domain proteins consisting of a single C2-domain have been reported in animal cells. We have isolated two cDNA clones, OsERG1a and OsERG1b, that encode two small C2-domain proteins of 156 and 159 amino acids, respectively, from a fungal elicitor-treated rice cDNA library.

View Article and Find Full Text PDF

Mitogen-activated protein kinase (MAPK) cascades are known to transduce plant defense signals, but the downstream components of the MAPK have as yet not been elucidated. Here, we report an MAPK from rice (Oryza sativa), BWMK1, and a transcription factor, OsEREBP1, phosphorylated by the kinase. The MAPK carries a TDY phosphorylation motif instead of the more common TEY motif in its kinase domain and has an unusually extended C-terminal domain that is essential to its kinase activity and translocation to the nucleus.

View Article and Find Full Text PDF