IEEE Trans Haptics
November 2020
We propose an electromagnetic-based braille display that can represent two-dimensional information. The key principle is a flip-latch structure, which allows satisfying requirements of both protrusion force for braille recognition and low power consumption. A magnet-inserted flip-latch has an eccentric shape, and is driven by and flips over the protruded voice coil and pushing the braille pin.
View Article and Find Full Text PDFIn this paper, we present an intelligent system that is capable of estimating the status of a player engaging in winter activities based on the sequence analysis of multivariate time-series sensor signals. Among the winter activities, this paper mainly focuses on downhill winter sports such as alpine skiing and snowboarding. Assuming that the mechanical vibrations generated by physical interaction between the ground surface and ski/snowboard in motion can describe the ground conditions and playing contexts, we utilize inertial and vibration signals to categorize the motion context.
View Article and Find Full Text PDFIEEE Trans Haptics
December 2018
In this paper, we present a robotic surface display that physically imitates the orientation of virtual 3D geometry touched through a 2D flat screen. The proposed approach renders the surface orientation of 3D geometry such that users can tactually obtain relative geometric information, which plays a significant role in the process of real-world haptic object perception. Taking advantage of the planar aspect of touch surfaces, the system constructs a rotation matrix to control the pose of a surface with minimal mechanical movements with given partial geometric information (i.
View Article and Find Full Text PDF