Publications by authors named "Byung-Hun Lee"

Activity-regulated cytoskeleton-associated protein (Arc) plays a crucial role in synaptic plasticity, a process integral to learning and memory. Arc transcription is induced within a few minutes of stimulation, making it a useful marker for neuronal activity. However, the specific neuronal activity patterns that initiate Arc transcription have remained elusive due to the inability to observe mRNA transcription in live cells in real time.

View Article and Find Full Text PDF

Thin films of ferrimagnetic iron garnets can exhibit useful magnetic properties, including perpendicular magnetic anisotropy (PMA) and high domain wall velocities. In particular, bismuth-substituted yttrium iron garnet (BiYIG) films grown on garnet substrates have a low Gilbert damping but zero Dzyaloshinskii-Moriya interaction (DMI), whereas thulium iron garnet (TmIG) films have higher damping but a nonzero DMI. We report the damping and DMI of thulium-substituted BiYIG (BiYTmIG) and TmIG|BiYIG bilayer thin films deposited on (111) substituted gadolinium gallium garnet and neodymium gallium garnet (NGG) substrates.

View Article and Find Full Text PDF

Social hierarchy is established as an outcome of individual social behaviors, such as dominance behavior during long-term interactions with others. Astrocytes are implicated in optimizing the balance between excitatory and inhibitory (E/I) neuronal activity, which may influence social behavior. However, the contribution of astrocytes in the prefrontal cortex to dominance behavior is unclear.

View Article and Find Full Text PDF

Dendrites on neurons support nonlinear electrical excitations, but the computational significance of these events is not well understood. We developed molecular, optical, and analytical tools to map sub-millisecond voltage dynamics throughout the dendritic trees of CA1 pyramidal neurons under diverse optogenetic and synaptic stimulus patterns, in acute brain slices. We observed history-dependent spike back-propagation in distal dendrites, driven by locally generated Na spikes (dSpikes).

View Article and Find Full Text PDF

Interface-driven effects on magnon dynamics are studied in magnetic insulator-metal bilayers using Brillouin light scattering. It is found that the Damon-Eshbach modes exhibit a significant frequency shift due to interfacial anisotropy generated by thin metallic overlayers. In addition, an unexpectedly large shift in the perpendicular standing spin wave mode frequencies is also observed, which cannot be explained by anisotropy-induced mode stiffening or surface pinning.

View Article and Find Full Text PDF

As basic units of neural networks, ensembles of synapses underlie cognitive functions such as learning and memory. These synaptic engrams show elevated synaptic density among engram cells following contextual fear memory formation. Subsequent analysis of the CA3-CA1 engram synapse revealed larger spine sizes, as the synaptic connectivity correlated with the memory strength.

View Article and Find Full Text PDF

Astrocytes can affect animal behavior by regulating tripartite synaptic transmission, yet their influence on affective behavior remains largely unclear. Here we showed that hippocampal astrocyte calcium activity reflects mouse affective state during virtual elevated plus maze test using two-photon calcium imaging in vivo. Furthermore, optogenetic hippocampal astrocyte activation elevating intracellular calcium induced anxiolytic behaviors in astrocyte-specific channelrhodopsin 2 (ChR2) transgenic mice (hGFAP-ChR2 mice).

View Article and Find Full Text PDF

Localization of mRNA facilitates spatiotemporally controlled protein expression in neurons. In axons, mRNA transport followed by local protein synthesis plays a critical role in axonal growth and guidance. However, it is not yet clearly understood how mRNA is transported to axonal subcellular sites and what regulates axonal mRNA localization.

View Article and Find Full Text PDF

Memories are thought to be encoded in populations of neurons called memory trace or engram cells. However, little is known about the dynamics of these cells because of the difficulty in real-time monitoring of them over long periods of time in vivo. To overcome this limitation, we present a genetically encoded RNA indicator (GERI) mouse for intravital chronic imaging of endogenous messenger RNA (mRNA)-a popular marker for memory trace cells.

View Article and Find Full Text PDF

We discovered the generation of a new bright blue fluorophore from a particular type of amine and 2-oxoglutarate (2-OG) under mild conditions without any chemical additives. Two β-aminoethylamine molecules and three 2-OG molecules form an unprecedented 2-pyridone structure with a fused γ-lactam ring (DTPP) complex reactions including double decarboxylation and quintuple dehydration. The DTPP fluorophore shows a high quantum yield (80%) and photostability.

View Article and Find Full Text PDF

A tenet of special relativity is that no particle can exceed the speed of light. In certain magnetic materials, the maximum magnon group velocity serves as an analogous relativistic limit for the speed of magnetic solitons. Here, we drive domain walls to this limit in a low-dissipation magnetic insulator using pure spin currents from the spin Hall effect.

View Article and Find Full Text PDF

Transcription and post-transcriptional regulations are critical in gene expression. To study the spatiotemporal regulation of RNA inside a cell, techniques for high-resolution imaging of RNA have been developed. In this chapter, we describe RNA fluorescent labeling methods using MS2 and PP7 systems to detect single RNA molecules in live neurons.

View Article and Find Full Text PDF

Single particle tracking is a compelling technique for investigating the dynamics of nanoparticles and biological molecules in a broad range of research fields. In particular, recent advances in fluorescence microscopy have made single molecule tracking a prevalent method for studying biomolecules with a high spatial and temporal precision. Particle tracking algorithms have matured over the past three decades into more easily accessible platforms.

View Article and Find Full Text PDF

This paper proposes three coordination laws for optimal energy generation and distribution in energy network, which is composed of physical flow layer and cyber communication layer. The physical energy flows through the physical layer; but all the energies are coordinated to generate and flow by distributed coordination algorithms on the basis of communication information. First, distributed energy generation and energy distribution laws are proposed in a decoupled manner without considering the interactive characteristics between the energy generation and energy distribution.

View Article and Find Full Text PDF

Local protein synthesis mediates precise spatio-temporal regulation of gene expression for neuronal functions such as long-term plasticity, axon guidance and regeneration. To reveal the underlying mechanisms of local translation, it is crucial to understand mRNA transport, localization and translation in live neurons. Among various techniques for mRNA analysis, fluorescence microscopy has been widely used as the most direct method to study localization of mRNA.

View Article and Find Full Text PDF

Objective: To evaluate whether the presence of lumbosacral transitional vertebrae (LSTV) affects the clinical outcomes of microdiscectomy (MD) in young adults with lumbar disc herniation.

Methods: We retrospectively included 398 patients who were followed-up for at least 2 years after MD for lumbar disc herniation at L4/5 (disc above the LSTV). The patients were divided into 2 groups.

View Article and Find Full Text PDF

Objective: The purpose of this study was to figure out the radiologic findings and risk factors related to adjacent segment degeneration (ASD) after anterior cervical discectomy and fusion (ACDF) using 3-year follow-up radiography, computed tomography (CT), and magnetic resonance image (MRI).

Methods: A retrospective matched comparative study was performed for 64 patients who underwent single-level ACDF with a cage and plate. Radiologic parameters, including upper segment range of motion (USROM), lower segment range of motion (LSROM), upper segment disc height (UDH), and lower segment disc height (LDH), clinical outcomes assessed with neck and arm visual analogue scale (VAS), and risk factors were analyzed.

View Article and Find Full Text PDF

Objective: There have been only a few studies on surgical treatment of lumbar disc herniation (LDH) in young adults. In addition, previous studies do not provide detailed information on the surgical outcomes for young adults with LDH. The purpose of this study was to compare the outcome of transforaminal percutaneous endoscopic lumbar discectomy (PELD) and open lumbar microdiscectomy for active, young adults (age 20-25 years).

View Article and Find Full Text PDF

[Purpose] This study aimed to quantitatively analyze characteristics of and changes in internal muscle structure according to the time of delayed onset muscle soreness (DOMS) using ultrasound imaging, thereby presenting clinical evidential data for evaluation of muscle damage. [Subjects] We recruited 38 male subjects. [Methods] Ultrasound images of the medial gastrocnemius muscle prior to induction of DOMS and immediately after, 24 hours after, 48 hours after, and 72 hours after induction of DOMS were obtained, and the thickness and pennation angle of the muscle were measured.

View Article and Find Full Text PDF

Endothelial progenitor cells (EPCs) have been shown to have therapeutic potential in ischemic disease. However, the number of EPCs for cell therapy is limited. In this study, instead of the typical adherent culture method, we investigated a more efficient, clinically applicable nonadhesive expansion method for early EPCs using cord blood-derived cells to overcome rapid cellular senescence.

View Article and Find Full Text PDF

The recombinant two-kringle domain of human tissue-type plasminogen activator (TK1-2) was found to inhibit angiogenesis and tumor growth. Recently, we found that TK1-2 inhibits adhesive differentiation of endothelial progenitor cells, and its contribution to tumor angiogenesis. In this study, we investigated the effects of TK1-2 on extracellular matrix-induced adhesion, signaling, and migration in order to understand the mechanism of action of TK1-2.

View Article and Find Full Text PDF

Outgrowing endothelial progenitor-derived cells (EPDCs) originate from a novel hierarchy of endothelial progenitor cells. In this study, EPDCs isolated from human cord blood were examined for phenotype and functional features upon aging. Young or aged EPDCs were similar to human umbilical vein endothelial cells (HUVECs), in exhibiting typical endothelial phenotypes.

View Article and Find Full Text PDF

Neovascularization plays a critical role in the growth and metastatic spread of tumors and involves recruitment of circulating endothelial progenitor cells (EPC) from bone marrow as well as sprouting of preexisting endothelial cells. In this study, we examined if EPCs could promote tumor angiogenesis and would be an effective cellular target for an angiogenesis inhibitor, the recombinant kringle domain of tissue-type plasminogen activator (TK1-2). When TK1-2 was applied in the ex vivo culture of EPCs isolated from human cord blood, TK1-2 inhibited adhesive differentiation of mononuclear EPCs into endothelial-like cells.

View Article and Find Full Text PDF