Korean J Physiol Pharmacol
November 2015
We attempted to investigate molecular mechanisms underlying phenotypic change of vascular smooth muscle cells (VSMCs) by determining signaling molecules involved in chemokine production. Treatment of human aortic smooth muscle cells (HAoSMCs) with thrombin resulted not only in elevated transcription of the (C-C motif) ligand 11 (CCL11) gene but also in enhanced secretion of CCL11 protein. Co-treatment of HAoSMCs with GF109230X, an inhibitor of protein kinase C, or GW5074, an inhibitor of Raf-1 kinase, caused inhibition of ERK1/2 phosphorylation and significantly attenuated expression of CCL11 at transcriptional and protein levels induced by thrombin.
View Article and Find Full Text PDFAutophagy is a vital pathway for the removal of β-amyloid peptide (Aβ) and the aggregated proteins that cause Alzheimer's disease (AD). We previously found that cilostazol induced SIRT1 expression and its activity in neuronal cells, and thus, we hypothesized that cilostazol might stimulate clearances of Aβ and C-terminal APP fragment β subunit (APP-CTFβ) by up-regulating autophagy.When N2a cells were exposed to soluble Aβ1-42, protein levels of beclin-1, autophagy-related protein5 (Atg5), and SIRT1 decreased significantly.
View Article and Find Full Text PDFKorean J Physiol Pharmacol
December 2014
We investigated the question of whether cholesterol catabolite can influence expression of inflammatory cytokines via Toll-like receptors (TLR) in monocytic cells. Treatment of THP-1 monocytic cells with 27-hydroxycholesterol (27OHChol) resulted in induction of gene transcription of TLR6 and elevated level of cell surface TLR6. Addition of FSL-1, a TLR6 agonist, to 27OHChol-treated cells resulted in transcription of the IL-1α gene and enhanced secretion of the corresponding gene product.
View Article and Find Full Text PDFBiomol Ther (Seoul)
January 2015
We investigated the question of whether 7-oxygenated cholesterol derivatives could affect inflammatory and/or immune responses in atherosclerosis by examining their effects on expression of IL-23 in monocytic cells. 7α-Hydroxycholesterol (7αOHChol) induced transcription of the TLR6 gene and elevated the level of cell surface TLR6 protein in THP-1 monocytic cells. Addition of an agonist of TLR6, FSL-1, to TLR6-expressing cells by treatment with 7αOHChol resulted in enhanced production of IL-23 and transcription of genes encoding the IL-23 subunit α (p19) and the IL-12 subunit β (p40).
View Article and Find Full Text PDFHigh mobility group box chromosomal protein 1 (HMGB-1) released from injured cells plays an important role in the development of arthritis. This study investigated the anti-angiogenic effects of cilostazol in collagen-induced arthritis (CIA) of mice, and the underlying mechanisms involved. The expressions of HIF-1α, VEGF, NF-κB p65 and SIRT1 in synovial fibroblasts obtained from rheumatoid arthritis (RA) patients were assessed by Western blotting, and in vitro and in vivo angiogenesis were analyzed.
View Article and Find Full Text PDFThe accumulation of plaques of β-amyloid (Aβ) peptides, a hallmark of Alzheimer's disease, results from the sequential cleavage of amyloid precursor protein (APP) by activation of β- and γ-secretases. However, the production of Aβ can be avoided by alternate cleavage of APP by α-and γ-secretases. We hypothesized that cilostazol attenuates Aβ production by increasing a disintegrin and metalloproteinase 10 (ADAM10)/α-secretase activity via SIRT1-coupled retinoic acid receptor-β (RARβ) activation in N2a cells expressing human APP Swedish mutation (N2aSwe).
View Article and Find Full Text PDFβ-Amyloid (Aβ) deposits and hyperphosphorylated tau aggregates are the chief hallmarks in the Alzheimer's disease (AD) brains, but the strategies for controlling these pathological events remain elusive. We hypothesized that CK2-coupled SIRT1 activation stimulated by cilostazol suppresses tau acetylation (Ac-tau) and tau phosphorylation (P-tau) by inhibiting activation of P300 and GSK3β. Aβ was endogenously overproduced in N2a cells expressing human APP Swedish mutation (N2aSwe) by exposure to medium containing 1% fetal bovine serum for 24 hr.
View Article and Find Full Text PDFNystatin, a polyene antifungal antibiotic, is a cholesterol sequestering agent. The antifungal agent alters composition of the plasma membrane of eukaryotic cells, whereas its effects on cells are poorly investigated. In the current study, we investigated the question of whether nystatin was able to induce expression of macrophage inflammatory protein-1 (MIP-1).
View Article and Find Full Text PDFIL-23 is produced by antigen presenting cells and plays critical roles in immune response in rheumatoid arthritis. In this study, we investigated whether the RhoA/Rho-kinase pathway is required to elevate TLR2-mediated IL-23 production in synovial macrophages from patients with rheumatoid arthritis (RA), and then examined the suppressive effect of cilostazol on these pathways. IL-23 production was elevated by lipoteichoic acid (LTA), a TLR2 ligand, and this elevation was more prominent in RA macrophages than in those from peripheral blood of normal control.
View Article and Find Full Text PDFBiochem Biophys Res Commun
August 2013
The polyene antifungal antibiotic nystatin can interact with cholesterol, thereby altering the composition of the plasma membrane in eukaryotic cells. We investigated whether nystatin influences responses to the infection by inducing expression of chemokines. THP-1 macrophages rarely expressed CC chemokine ligand 2 (CCL2) and CXCL8.
View Article and Find Full Text PDFTLR6 forms a heterodimer with TLR2 and TLR4. While proinflammatory roles of TLR2 and TLR4 are well documented, the role of TLR6 in inflammation is poorly understood. In order to understand mechanisms of action of TLR6 in inflammatory responses, we investigated the effects of FSL-1, the TLR6 ligand, on expression of chemokine CCL2 and cytokine IL-1β and determined cellular factors involved in FSL-1-mediated expression of CCL2 and IL-1β in mononuclear cells.
View Article and Find Full Text PDFJ Cardiovasc Pharmacol
August 2012
Atherosclerotic plaque contains materials, such as cholesterol, oxysterols, cell debris, modified fatty acids, and infiltrated cells. Among them, cholesterol is the major component in plaque. Cholesterol is known to originate from the influx of extracellular materials, but this explanation is not enough for the cholesterol accumulation observed in atherosclerotic plaque.
View Article and Find Full Text PDFAmyloid-β peptide (Aβ) deposits in the brain are critical in the neurotoxicity induced by Aβ. This study elucidates the underlying signaling pathway by which cilostazol protects HT22 neuronal cells from Aβ(1-40) (3-30 μM)-induced deterioration of cell proliferation, viability, and neurite elongation. Cilostazol rescued HT22 cells from the apoptotic cell death induced by Aβ toxicity through the downregulation of phosphorylated p53 (Ser15), Bax, and caspase-3 and the upregulation of Bcl-2 expression, which improved neuronal cell proliferation and viability.
View Article and Find Full Text PDFBiochem Biophys Res Commun
April 2011
Peptidoglycan (PG) is detected in a high proportion in inflammatory cell-rich regions of human atheromatous plaques. In the present study, we determined the cellular factors involved in PG-mediated chemokine expression in mononuclear cells in order to understand the molecular mechanisms of inflammatory responses to bacterial pathogen-associated molecular patterns in the diseased artery. Exposure of human monocytic leukemia THP-1 cells to PG resulted in not only enhanced secretion of CCL2 and CCL4 but also profound induction of their gene transcripts, which were abrogated by oxidized 1-palmitoyl-2-arachidonosyl-sn-phosphatidylcholine, an inhibitor of Toll-like receptors (TLRs)-2/4, but not by polymyxin B.
View Article and Find Full Text PDFTo understand the roles of purinergic receptors and cellular molecules below the receptors in the vascular inflammatory response, we determined if extracellular nucleotides up-regulated chemokine expression in vascular smooth muscle cells (VSMCs). Human aortic smooth muscle cells (AoSMCs) abundantly express P2Y(1), P2Y(6), and P2Y(11) receptors, which all respond to extracellular nucleotides. Exposure of human AoSMCs to NAD(+), an agonist of the human P2Y(11) receptor, and NADP(+) as well as ATP, an agonist for P2Y(1) and P2Y(11) receptors, caused increase in chemokine (C-C motif) ligand 2 gene (CCL2) transcript and CCL2 release; however, UPT did not affect CCL2 expression.
View Article and Find Full Text PDFRecruitment and adhesion of exogenous endothelial progenitor cells (EPCs) or endogenously mobilized bone marrow mononuclear cells (BM MNCs) to the sites of ischemia is an important focus of cell therapy. This study sought to determine whether cilostazol enhances integrin-dependent homing of progenitor cells both in vitro and in vivo. In the in vitro experiments with human umbilical cord blood (HUCB)-derived EPCs, cilostazol (10 μM) stimulated up-regulation of integrins β1, α1, and αv as well as 8-pCPT-2'-O-Me-cAMP (100 μM; 8-pCPT, Epac activator).
View Article and Find Full Text PDFThe effects of cilostazol on stimulating heme oxygenase (HO)-1 expression including signal pathways and suppression of inflammatory cytokines and molecules were studied. Cilostazol stimulation time (1-8 h)- and concentration (1-30 μM)-dependently increased the HO-1 mRNA and protein expression associated with increased HO-1 activity, as did cobalt protoporphyrin IX (1-3 μM) in J774 macrophages. In addition, cilostazol (1-30 μM) concentration-dependently reduced lipopolysaccharide (LPS)-mediated nitrite and TNF-α production, in accordance with the inhibition of LPS-stimulated inducible nitric oxide synthase (iNOS) and cyclooxygenase-2 (COX-2) protein expression in the J774 macrophages, as did CoPP (1 μM).
View Article and Find Full Text PDFCilostazol is known to be a specific type III phosphodiesterase inhibitor, which promotes increased intracellular cAMP levels. We assessed the effect of cilostazol on production of angioneurins and chemokines and recruitment of new endothelial cells for vasculogenesis in a mouse model of transient forebrain ischemia. Pyramidal cell loss was prominently evident 3-28 days postischemia, which was markedly ameliorated by cilostazol treatment.
View Article and Find Full Text PDFObjective: To assess the effects of cilostazol in inhibiting proliferation and enhancing apoptosis in synovial cells from patients with rheumatoid arthritis (RA).
Methods: Synovial cell proliferation was measured by MTT assay. The expression of NF-kappaB, IkappaBalpha, Bcl-2, Bax, heme oxygenase 1 (HO-1), and Nrf2 was determined by Western blotting.
Angiotensin II (AngII) is a crucial hormone that affects vasoconstriction and exerts hypertrophic effects on vascular smooth muscle cells. Here, we showed that phosphatidylinositol 3-kinase-dependent calcium mobilization plays pivotal roles in AngII-induced vascular constriction. Stimulation of rat aortic vascular smooth muscle cell (RASMC)-embedded collagen gel with AngII rapidly induced contraction.
View Article and Find Full Text PDFIn a previous study, cilostazol promoted differentiation of 3T3-L1 fibroblasts into adipocytes and improved insulin sensitivity by stimulating peroxisome proliferator-activated receptor (PPAR) gamma transcription. This study evaluated the in vivo efficacy of cilostazol to protect a db/db mouse model of type 2 diabetes against altered metabolic abnormalities and proinflammatory markers via activation of PPARgamma transcription. Eight-week-old db/db mice were treated with cilostazol or rosiglitazone for 12 days.
View Article and Find Full Text PDFBiochem Biophys Res Commun
January 2009
Oxidative stress results in sustained release of heat shock protein 90 (HSP90) from vascular smooth muscle cells (VSMCs). The aim of this article is to investigate whether extracellular HSP90 predisposes VSMCs to pro-inflammatory phenotype. Exposure of aortic smooth muscle cells to HSP90 elevated IL-8 release and IL-8 transcript via promoter activation.
View Article and Find Full Text PDFDespite extensive studies on cellular responses to activation of Toll-like receptor-4 (TLR-4), it is not evident weather its activation affects gene expression of interleukin-8 (IL-8) in vascular smooth muscle cells (VSMCs). Therefore, this study has investigated whether and how TLR-4 influences IL-8 expression in VSMCs. Exposure of aortic smooth muscle cells to TLR-4 agonistic lipopolysaccharide (LPS) not only enhanced release of IL-8 protein but also induced IL-8 gene transcript via promoter activation.
View Article and Find Full Text PDFHeat shock proteins (HSPs) serve as molecular chaperones and play a role in cell protection from damage in response to stress stimuli. The aim of this article is to investigate whether HSP22 affects IL-8 expression in vascular smooth muscle cells (VSMCs), and which cellular factors are involved in the HSP-mediated IL-8 induction in that cell type in terms of mitogen activated protein kinase (MAPK) and transcription element. Exposure of aortic smooth muscle cells (AoSMCs) to HSP22 not only enhanced IL-8 release but also induced IL-8 transcript via promoter activation.
View Article and Find Full Text PDF