Publications by authors named "Byung Seok Oh"

Objectives: To evaluate the therapeutic effect of once-weekly low-intensity extracorporeal shock wave therapy (Li-ESWT) on underactive bladder (UAB) in the streptozotocin (STZ)-induced diabetic rat model.

Materials And Methods: In all, 36 female Sprague-Dawley rats were divided into three groups: normal control (NC), diabetes mellitus control (DMC), and DM with Li-ESWT (DM Li-ESWT). The two DM groups received an intraperitoneal 60 mg/kg STZ injection to induce DM.

View Article and Find Full Text PDF

Aim: Stress urinary incontinence (SUI) is a significant health problem for women. Treatments employing muscle derived stem cells (MDSCs) may be a promising approach to this prevalent, bothersome condition, but these treatments are invasive and require collection of cells from one site for injection into another. It is also unknown whether or not these cells establish themselves and function as muscle cells in the target tissues.

View Article and Find Full Text PDF

Low-intensity extracorporeal shock wave therapy (Li-ESWT) is used in the treatment of erectile dysfunction, but its mechanisms are not well understood. Previously, we found that Li-ESWT increased the expression of brain-derived neurotrophic factor (BDNF). Here we assessed the underlying signaling pathways in Schwann cells in vitro and in penis tissue in vivo after nerve injury.

View Article and Find Full Text PDF

Aims: Recent studies have showed that interstitial cells (ICs) are widely distributed in the genitourinary tract and have suggested their involvement in spontaneous electrical activity and muscle contraction. Nitric oxide (NO) is thought to play a role in bladder overactivity related with bladder outlet obstruction (BOO). The purposes of this study were to investigate the effect of bladder overactivity induced by BOO on ICs and nitric oxide synthase (NOS) isoforms in rat urinary bladder.

View Article and Find Full Text PDF

Preferential growth of pure single-walled carbon nanotubes (SWNTs) over multi-walled carbon nanotubes (MWNTs) was demonstrated at low temperature by water plasma chemical vapor deposition. Water plasma lowered the growth temperature down to 450 degrees C, and the grown nanotubes were single-walled without carbonaceous impurities and MWNTs. The preferential growth of pure SWNTs over MWNTs was proven with micro-Raman spectroscopy, high-resolution transmission electron microscopy, and electrical characterization of the grown nanotube networks.

View Article and Find Full Text PDF