Publications by authors named "Byung Rim Park"

Hypotension is one of the potential causes of dizziness. In this review, we summarize the studies published in recent years about the electrophysiological and pharmacological mechanisms of hypotension-induced dizziness and the role of the vestibular system in the control of blood pressure in response to hypotension. It is postulated that ischemic excitation of the peripheral vestibular hair cells as a result of a reduction in blood flow to the inner ear following hypotension leads to excitation of the central vestibular nuclei, which in turn may produce dizziness after hypotension.

View Article and Find Full Text PDF

Orthostatic hypotension (OH) is associated with symptoms including headache, dizziness, and syncope. The incidence of OH increases with age. Attenuation of the vestibulosympathetic reflex (VSR) is also associated with an increased incidence of OH.

View Article and Find Full Text PDF

The caudal subnucleus of the spinal trigeminal nucleus (medullary dorsal horn; MDH) receives direct inputs from small diameter primary afferent fibers that predominantly transmit nociceptive information in the orofacial region. Recent studies indicate that reactive oxygen species (ROS) is involved in persistent pain, primarily through spinal mechanisms. In this study, we aimed to investigate the role of xanthine/xanthine oxidase (X/XO) system, a known generator of superoxide anion (O), on membrane excitability in the rat MDH neurons.

View Article and Find Full Text PDF

The parafascicular nucleus (PFN) of the thalamus is a primary structure in the feedback circuit of the basal ganglia-thalamo-cortical system, as well as in the neural circuit of the vestibulo-thalamo-striatal pathway. We investigated the characteristics of the functional connectivity between the peripheral vestibular system and the PFN in rats. A single electrical stimulation was applied to the horizontal semicircular canal nerve in the peripheral vestibular end-organs.

View Article and Find Full Text PDF

Significant evidence supports the role of the vestibular system in the regulation of blood pressure during postural movements. In the present study, the role of the vestibulo-spino-adrenal (VSA) axis in the modulation of blood pressure via the vestibulosympathetic reflex was clarified by immunohistochemical and enzyme immunoassay methods in conscious rats with sinoaortic denervation. Expression of c-Fos protein in the intermediolateral cell column of the middle thoracic spinal regions and blood epinephrine levels were investigated, following microinjection of glutamate receptor agonists or antagonists into the medial vestibular nucleus (MVN) and/or sodium nitroprusside (SNP)-induced hypotension.

View Article and Find Full Text PDF
Article Synopsis
  • Orthostatic hypotension is particularly prevalent in older adults and is linked to decreased vestibulo-sympathetic reflex function.
  • This study examines how glutamate affects the vestibulo-solitary pathway to better understand the condition's underlying mechanisms.
  • Results show that glutamate receptors significantly influence blood pressure regulation within this pathway, suggesting their importance in orthostatic hypotension.
View Article and Find Full Text PDF

Input signals originating from baroreceptors and vestibular receptors are integrated in the rostral ventrolateral medulla (RVLM) to maintain blood pressure during postural movement. The contribution of baroreceptors and vestibular receptors in the maintenance of blood pressure following hypotension were quantitatively analyzed by measuring phosphorylated extracellular regulated protein kinase (pERK) expression and glutamate release in the RVLM. The expression of pERK and glutamate release in the RVLM were measured in conscious rats that had undergone bilateral labyrinthectomy (BL) and/or sinoaortic denervation (SAD) following hypotension induced by a sodium nitroprusside (SNP) infusion.

View Article and Find Full Text PDF

Control of blood pressure is maintained by the interaction between the arterial baroreflex and vestibulosympathetic reflex during postural changes. In this study, the contributions of vestibular receptors and baroreceptors to the maintenance of blood pressure following acute hypotension were compared in terms of phosphorylated extracellular regulated protein kinase (pERK) expression in the nucleus tractus solitaries (NTS). Expression of pERK in the NTS was measured in conscious rats that had undergone bilateral labyrinthectomy (BL) and/or sinoaortic denervation (SAD) 5, 10, 20, and 40 min following acute hypotension induced by sodium nitroprusside (SNP) infusion.

View Article and Find Full Text PDF

Blood pressure is maintained by the interaction between the arterial baroreflexes and the vestibulo-cardiovascular reflexes during postural changes. In this study, the influence of the vestibular receptors on the maintenance of blood pressure following acute hypotension was quantitatively compared with the role of baroreceptors in terms of c-Fos protein expression in the nucleus tractus solitarius (NTS). Expression of c-Fos protein in the NTS was measured in conscious rats that had undergone bilateral labyrinthectomy (BL) and/or sinoaortic denervation (SAD).

View Article and Find Full Text PDF

The aim of this study was to elucidate the mechanism of isolated vascular vertigo by determining selective and relative ischemic vulnerability of the vestibular structures using a global hypoperfusion model in rats. Sprague-Dawley male rats weighing 330-350 g were subjected to transient global ischemia of the brain using a 4-vessel-occlusion (4VO) model. After permanent occlusion of both vertebral arteries (VA) using electrocauterization, both common carotid arteries (CCAs) were occluded for 5-20 min with ligation.

View Article and Find Full Text PDF

Following unilateral vestibular deafferentation, many of the oculomotor and postural symptoms, such as spontaneous ocular nystagmus and head tilt, gradually abate over time in a process known as 'vestibular compensation'. Although many experimental studies have indicated a role for the cerebellum during vestibular compensation, the effects of unilateral labyrinthectomy (UL) on cerebellar function and the role of cerebellum in post-lesional plasticity remain unclear. Thus, we investigated the temporal changes of calbindin expression in the ipsilateral and contralateral nodulus to the lesion side during vestibular compensation following UL in rats.

View Article and Find Full Text PDF

Contribution of the vestibular end organ to regulation of arterial pressure was quantitatively compared with the role of baroreceptors in terms of baroreflex sensitivity and c-Fos protein expression in the rostral ventrolateral medulla (RVLM). Baroreflex sensitivity and c-Fos protein expression in the RVLM were measured in conscious rats that had undergone bilateral labyrinthectomy (BL) and/or baroreceptor unloading. BL attenuated baroreflex sensitivity during intravenous infusion of sodium nitroprusside (SNP), but did not significantly affect the sensitivity following infusion of phenylephrine (PE).

View Article and Find Full Text PDF

In the vestibular nuclei, acute hypotension induces excitation of electrical activity and expression of c-Fos protein and phosphorylated extracellular signal-regulated kinase (pERK). Expression of c-Fos protein and pERK is mediated by the excitatory neurotransmitter, glutamate. We investigated the signaling pathway of glutamate and its receptors in the vestibular nuclei following acute hypotension in conscious rats.

View Article and Find Full Text PDF

The hypothalamic-pituitary-adrenal (HPA) axis is the primary endocrine system to respond to stress. The HPA axis may be affected by increased level of corticotrophin-releasing factors under chronic stress and by chronic administration of monosodium glutamate (MSG). The purpose of this study was to investigate whether chronic MSG administration aggravates chronic variable stress (CVS)-induced behavioral and hormonal changes.

View Article and Find Full Text PDF

This study was performed to investigate the role of glutamate neurotransmitter system on gastrointestinal motility in a middle cerebral artery occlusion (MCAO) model of rats. The right middle cerebral artery was occluded by surgical operation, and intestinal transit and geometric center as a parameter of gastrointestinal motility and expression of c-Fos protein in the insular cortex and cingulate cortex were measured at 2 and 12 h after MCAO. Intestinal transit was 66.

View Article and Find Full Text PDF

Microdialysis and high performance liquid chromatography (HPLC) were used to measure the changes of certain amino acids in the medial vestibular nucleus (MVN) of conscious rats in order to understand whether those amino acids are involved in the regulation of blood pressure. Acute hypotension was induced by infusing sodium nitroprusside (SNP) into the femoral vein. In the control group, glutamate (Glu) release increased, though gamma-aminobutyric acid (GABA) and taurine (Tau) release decreased in the MVN following acute hypotension.

View Article and Find Full Text PDF

Background: The loss of unilateral vestibular function causes vestibulogastrointestinal symptoms that include nausea and vomiting. However, the temporal changes occurring on vestibular compensation are unclear. Thus, the temporal changes and the role of the cerebellum in the recovery of vestibulogastrointestinal symptoms after unilateral labyrinthectomy (UL) were investigated in this study.

View Article and Find Full Text PDF

Background And Objectives: Reactive oxygen species (ROS) and mitogen-activated protein (MAP) kinase play an important role in the development of myocardial reperfusion injury. In this study, we examined whether treatment with alpha-lipoic acid (ALA) before reperfusion could prevent myocardial reperfusion injury in vivo.

Materials And Methods: Sprague-Dawley rats were subjected to a 45-minute left anterior descending coronary artery ligation followed by 45- or 10-minute reperfusion.

View Article and Find Full Text PDF

The role of flocculus in vestibular compensation is still a controversial issue. Calbindin regulates intracellular signaling and has been reported to be a reliable marker of Purkinje cell. Expression of calbindin in flocculus was examined using immunohistochemistry following unilateral labyrinthectomy (UL) in rats.

View Article and Find Full Text PDF

Acute hypotension induces excitation of electrical activity and expression of c-Fos protein and phosphorylated extracellular signal-regulated kinase (pERK) in the vestibular nuclei. Expression of c-Fos protein and pERK is mediated by the excitatory neurotransmitter, glutamate. In this study, in order to investigate the signaling pathway of glutamate in the vestibular nuclei following acute hypotension, expression of the NR2B subunit of glutamate N-methyl-D-aspartate (NMDA) receptors and the GluR1 subunit of glutamate alpha-amino-3-hydroxy-5-methylisoxazole-4-propionic acid (AMPA) receptors was measured by Western blotting in the medial vestibular nucleus (MVN) following acute hypotension in bilateral labyrinthectomized (BL) rats.

View Article and Find Full Text PDF

Calcium (Ca(2+)) is an intracellular second messenger associated with neuronal plasticity of the central nervous system. The calcium-binding proteins regulate the Ca(2+)-mediated signals in the cytoplasm and buffer the calcium concentration. This study examined temporal changes of three calcium-binding proteins (calretinin, calbindin and parvalbumin) in the medial vestibular nucleus (MVN) during vestibular compensation after unilateral labyrinthectomy (UL) in rats.

View Article and Find Full Text PDF

Background: Acute ischemic stroke in the distribution of the anterior inferior cerebellar artery (AICA) can cause the vestibular dysfunction in the roll plane of the vestibuloocular reflex with abnormal ocular torsion (OT). There has been no systemic study that carefully investigates the nature of OT that occurs with AICA infarction.

Objectives: To investigate the frequency, the characteristic patterns of OT associated with AICA territory infarction, and the crucial site for determining the direction of OT in AICA territory infarction.

View Article and Find Full Text PDF

We investigated the inhibitory pathways that mediate the antinociceptive effects of heterotopic electro-acupuncture (EA) on formalin injection-induced pain in rats. EA (2 ms, 10 Hz, 3 mA) was delivered to heterotopic acupoints HT(7) and PC(7) for 30 min; this was followed immediately by subcutaneous injection of formalin into the left hind paw of rats. Naltrexone (10 mg/kg, i.

View Article and Find Full Text PDF

Cisplatin is a highly effective chemotherapeutic agent but with significant ototoxic side effects. Apoptosis is an important mechanism of cochlear hair cell loss following exposure to an ototoxic level of cisplatin. The present study investigated the effects of the cannabinoid receptor 2 (CB2) ligand JWH-015 on cisplatin-induced apoptosis.

View Article and Find Full Text PDF

This study examined the antinociceptive effect of electroacupuncture (EA) to heterotopic acupoints on formalin-induced pain in rats. EA (2 ms, 10 Hz, and 3 mA) was delivered to heterotopic acupoints HE(7) and PE(7), or non-acupoints at the right fore limb, for 30 min and was immediately followed by subcutaneous formalin injection into the left hind paw, respectively. The quantified pain score, electromyogram (EMG) response of the C-fiber reflex, and cFos immunoreactivity were assessed, respectively.

View Article and Find Full Text PDF