Publications by authors named "Byung Pal Yu"

Article Synopsis
  • - Senoinflammation is a persistent low-grade inflammatory process linked to aging, affecting multiple organs and contributing to systemic degeneration and age-related diseases.
  • - The review includes biochemical evidence that supports the involvement of senoinflammation in metabolic dysfunction and the development of the senescence-associated secretory phenotype (SASP), which worsens with age.
  • - Calorie restriction (CR) has shown promising anti-inflammatory effects, reducing harmful substances related to senoinflammation and representing a potential strategy for targeting aging and age-related diseases.
View Article and Find Full Text PDF
Article Synopsis
  • Age-related chronic inflammation is a persistent low-grade inflammatory state that contributes to aging and various related diseases.
  • The chapter examines how age affects pro-inflammatory signaling pathways, specifically NF-κB, and discusses the imbalance of pro- and anti-inflammatory substances and other cellular factors involved in this process.
  • By understanding these mechanisms, researchers aim to develop effective anti-inflammatory strategies to improve health during aging.
View Article and Find Full Text PDF

The vitamin-C-synthesizing enzyme senescent marker protein 30 (SMP30) is a cold resistance gene in Drosophila, and vitamin C concentration increases in brown adipose tissue post-cold exposure. However, the roles of SMP30 in thermogenesis are unknown. Here, we tested the molecular mechanism of thermogenesis using wild-type (WT) and vitamin C-deficient SMP30-knockout (KO) mice.

View Article and Find Full Text PDF

Memory loss is the most common occurrence of dementia in the elderly population. Evidence shows 1,2-Diacetylbenzene (DAB) can exacerbate cerebral dysfunction. The molecular mechanisms involved in DAB actions in the hippocampus have not been well elucidated to date.

View Article and Find Full Text PDF

Background: Converging evidence indicates prolactin (PRL) and diabetes play an important role in the pathophysiology of cognitive impairment. However, little is known about the mechanisms responsible for the effects of PRL and diabetes on cognitive impairment.

Summary: We summarize and review the available literature and current knowledge of the association between PRL and diabetes on aspects of cognitive impairment.

View Article and Find Full Text PDF

FoxOs and their post-translational modification by phosphorylation, acetylation, and methylation can affect epigenetic modifications and promote the expression of downstream target genes. Therefore, they ultimately affect cellular and biological functions during aging or occurrence of age-related diseases including cancer, diabetes, and kidney diseases. As known for its key role in aging, FoxOs play various biological roles in the aging process by regulating reactive oxygen species, lipid accumulation, and inflammation.

View Article and Find Full Text PDF

Background: Prolactin (PRL) is one of the most diverse pituitary hormones and is known to modulate normal neuronal function and neurodegenerative conditions. Many studies have described the influence that PRL has on the central nervous system and addressed its contribution to neurodegeneration, but little is known about the mechanisms responsible for the effects of PRL on neurodegenerative disorders, especially on Alzheimer's disease (AD) and Parkinson's disease (PD).

Summary: We review and summarize the existing literature and current understanding of the roles of PRL on various PRL aspects of AD and PD.

View Article and Find Full Text PDF

1,2-Diacetylbenzene (DAB) is a metabolite of 1,2-diethylbenzene, which is commonly used in the manufacture of plastics and gasoline. We examined the neurotoxic effects of DAB in young and old rats, particularly its effects on hippocampus. Previously, we reported DAB impairs hippocampal neurogenesis but that the underlying mechanism remained unclear.

View Article and Find Full Text PDF

This special issue on the effects of calorie restriction (CR) and intermittent fasting (IF) on health and diseases includes five scholarly reviews and four original articles that provide an insight into the molecular and cellular action mechanisms of epigenetically manipulated dietary paradigms [...

View Article and Find Full Text PDF

Background & Aims: Endoplasmic reticulum (ER) stress is one of the major causes of hepatic insulin resistance through increasing de novo lipogenesis. Forkhead box O6 (FoxO6) is a transcription factor mediating insulin signalling to glucose and lipid metabolism, therefore, dysregulated FoxO6 is involved in hepatic insulin resistance. In this study, we elucidated the role of FoxO6 in ER stress-induced hepatic lipogenesis.

View Article and Find Full Text PDF

Chronic inflammation is a complex and unresolved inflammatory response with low-grade multivariable patterns that aggravate systemic pathophysiological conditions and the aging process. To redefine and delineate these age-related complex inflammatory phenomena at the molecular, cellular, and systemic levels, the concept of "Senoinflammation" was recently formulated. In this review, we describe the accumulated data on both the multiphase systemic inflammatory process and the cellular proinflammatory signaling pathway.

View Article and Find Full Text PDF

Chronic inflammation, a pervasive feature of the aging process, is defined by a continuous, multifarious, low-grade inflammatory response. It is a sustained and systemic phenomenon that aggravates aging and can lead to age-related chronic diseases. In recent years, our understanding of age-related chronic inflammation has advanced through a large number of investigations on aging and calorie restriction (CR).

View Article and Find Full Text PDF

Aging is associated with increased fat mass and elevated serum leptin levels (hyperleptinemia), causing proinflammation in the kidneys where it plays a primary role in the removal of endogenous leptin from the circulation. Lymphocyte-specific kinase (Lck) is a positive regulator of inflammatory signaling and a potential treatment target for age-related diseases, but its role in leptin signaling is unknown. Here, we investigated how Lck influences hyperleptinemia-induced inflammation in kidney tissues from 6- and 21-month-old rats.

View Article and Find Full Text PDF

Decreased forkhead box O1 (FoxO1) activity induces hyperlipidemia and increased PPARγ, leading to hyperlipidemia in association with endoplasmic reticulum (ER) stress. In the liver, aging and comorbidities such as hyperlipidemia and diabetes significantly influence a wide variety of steatosis, but the underlying mechanisms are complex and remain elusive.To establish the modulatory role of FoxO1 and the functional consequences of its altered interaction with PPARγ in the present study, we utilized a cell culture system, aged rats and diabetic db/db mice.

View Article and Find Full Text PDF

Age-associated chronic inflammation is characterized by unresolved and uncontrolled inflammation with multivariable low-grade, chronic and systemic responses that exacerbate the aging process and age-related chronic diseases. Currently, there are two major hypotheses related to the involvement of chronic inflammation in the aging process: molecular inflammation of aging and inflammaging. However, neither of these hypotheses satisfactorily addresses age-related chronic inflammation, considering the recent advances that have been made in inflammation research.

View Article and Find Full Text PDF

FoxO has been proposed to play a role in the promotion of insulin resistance, and inflammation. FoxO is a pro-inflammatory transcription factor that is a key mediator of generation of inflammatory cytokines such as IL-1β in the liver. However, the detailed association of FoxO6 with insulin resistance and age-related inflammation has not been fully documented.

View Article and Find Full Text PDF

β-Hydroxybutyrate (HB) is a ketone body used as an energy source that has shown anti-inflammatory effects similar to calorie restriction (CR); Here, PGC-1α, an abundantly expressed co-factor in the kidney, was reported to interact with both FoxO1 and NF-κB although the definitive interactive mechanism has not yet been reported. In this study, we investigated whether renal aging-related inflammation is modulated by HB. We compared aged rats administered with HB to calorie restricted rats and examined the modulation of FoxO1 and the NF-κB pathway through interactions with PGC-1α.

View Article and Find Full Text PDF

Aging is a complex and progressive process characterized by physiological and functional decline with time that increases susceptibility to diseases. Aged-related functional change is accompanied by a low-grade, unresolved chronic inflammation as a major underlying mechanism. In order to explain aging in the context of chronic inflammation, a new integrative concept on age-related chronic inflammation is necessary that encompasses much broader and wider characteristics of cells, tissues, organs, systems, and interactions between immune and non-immune cells, metabolic and non-metabolic organs.

View Article and Find Full Text PDF

Age-associated renal fibrosis is related with renal function decline during aging. Imbalance between accumulation and degradation of extracellular matrix is key feature of fibrosis. In this study, RNA-sequencing (RNA-Seq) results based on next-generation sequencing (NGS) data were analyzed to identify key proteins that change during aging and calorie restriction (CR).

View Article and Find Full Text PDF

Recent studies have shown a role for miRNAs in aging and age-related diseases, and the modulation of miRNA expression by diet attracts attention as a new therapeutic strategy. Here, we focused on identifying specific exosomal miRNAs derived from serum of aged rats and the effect of short-term calorie restriction (CR) on their expression. Exosomes from serum of young (7-month), old (22-month), and old-CR Sprague Dawley rats were isolated and characterized by transmission electron microscopy analyses, dynamic light scattering measurements, and Western blotting.

View Article and Find Full Text PDF

Defects in the renal fatty acid oxidation (FAO) pathway have been implicated in the development of renal fibrosis. Although, compared with young kidneys, aged kidneys show significantly increased fibrosis with impaired kidney function, the mechanisms underlying the effects of aging on renal fibrosis have not been investigated. In this study, we investigated peroxisome proliferator-activated receptor (PPAR) and the FAO pathway as regulators of age-associated renal fibrosis.

View Article and Find Full Text PDF

Nonalcoholic fatty liver disease (NAFLD) is frequently observed in obese and aged individuals. Peroxisome proliferator-activated receptors (PPARs) play a role in regulating hepatic lipid accumulation, a hallmark of NAFLD development. A PPAR pan agonist, 2-(4-(5,6-methylenedioxybenzo[d]thiazol-2-yl)-2-methylphenoxy)-2-methylpropanoic acid (MHY2013) has been shown to prevent fatty liver formation and insulin resistance in obese mice (db/db) model.

View Article and Find Full Text PDF

Epigenetics oftenly described as the heritable changes in gene expression independent of changes in DNA sequence. Various environmental factors such as nutrition-dietary components, lifestyle, exercise, physical activity, toxins, and other contributing factors remodel the genome either in a constructive or detrimental way. Since epigenetic changes are reversible and nutrition is one of the many epigenetic regulators that modify gene expression without changing the DNA sequence, dietary nutrients and bioactive food components contribute to epigenetic phenomena either by directly suppressing DNA methylation or histone catalyzing enzymes or by changing the availability of substrates required for enzymatic reactions.

View Article and Find Full Text PDF