Publications by authors named "Byung Mun Jung"

The practical application of 2D MXenes in electronic and energy fields has been hindered by the severe variation in the quality of MXene products depending on the parent MAX phases, manufacturing techniques, and preparation parameters. In particular, their synthesis has been impeded by the lack of studies reporting the synthesis of high-quality parent MAX phases. In addition, controllable and uniform deposition of 2D MXenes on various large-scale substrates is urgently required to use them practically.

View Article and Find Full Text PDF

Despite significant advances in the development of flexible gel polymer electrolytes (GPEs), there are still problems to be addressed to apply them to flexible electric double layer capacitors (EDLCs), including interfacial interactions between the electrolyte and electrode under deformation. Previously reported EDLCs using GPEs have laminated structures with weak interfacial interactions between the electrode and electrolyte, leading to fragility upon elongation and low power density due to lower utilization of the surface area of the carbon material in the electrode. To overcome these problems, we present a new strategy for constructing an epoxy-based GPE that can provide strong adhesion between electrode and electrolyte.

View Article and Find Full Text PDF

Nanoparticle/graphene hybrid composites have been of great interest in various disciplines due to their unique synergistic physicochemical properties. In this study, we report a facile and generalized synthesis method for preparing nanoparticle/exfoliated graphene (EG) composites by tailored electrostatic interactions. EG was synthesized by an electrochemical method, which produced selectively oxidized graphene sheets at the edges and grain boundaries.

View Article and Find Full Text PDF

Solid polymer electrolytes (SPEs) have drawn attention for promising multifunctional electrolytes requiring very good mechanical properties and ionic conductivity. To develop a safe SPE for energy storage applications, mechanically robust cross-linked epoxy matrix is combined with fast ion-diffusing ionic liquid/lithium salt electrolyte (ILE) via a simple one-pot curing process. The epoxy-rich SPEs show higher Young's modulus ( E), with higher glass transition temperature ( T) but lower ionic conductivity (σ) with a higher activation energy, compared to the ILE-rich SPEs.

View Article and Find Full Text PDF

We report the effect of epoxy adhesion layers with different mechanical or physical property on a magnetoelectric (ME) composite laminate composed of FeBSi alloy (Metglas)/single-crystal Pb(MgNb)O-Pb(Zr,Ti)O/Metglas to achieve an improved ME conversion performance. Through theoretical simulation, it was revealed that the Young's modulus and the thickness of interfacial adhesives were major parameters that influence the conversion efficiency in ME composites. In the experimental evaluation, we utilized three epoxy materials with a distinct Young's modulus and adjusted the average thickness of the adhesion layers to optimize the ME conversion.

View Article and Find Full Text PDF

Background/objectives: This study was performed to measure fat-soluble vitamins and minerals in breast milk of Korean lactating mothers who exclusively breastfed their babies.

Subjects/methods: Breast milk samples were collected from 334 mothers. Concentrations of retinol and α-tocopherol were analyzed by high performance liquid chromatography ultraviolet spectrometry while concentrations of minerals were measured by inductively coupled plasma optical emission spectrometry.

View Article and Find Full Text PDF

Textile-based humidity sensors can be an important component of smart wearable electronic-textiles and have potential applications in the management of wounds, bed-wetting, and skin pathologies or for microclimate control in clothing. Here, we report a wearable textile-based humidity sensor for the first time using high strength (∼750 MPa) and ultratough (energy-to-break, 4300 J g) SWCNT/PVA filaments via a wet-spinning process. The conductive SWCNT networks in the filaments can be modulated by adjusting the intertube distance by swelling the PVA molecular chains via the absorption of water molecules.

View Article and Find Full Text PDF

Magnetic nanocomposite fibers are a topic of intense research due to their potential breakthrough applications such as smart magnetic-field-response devices and electromagnetic interference (EMI) shielding. However, clustering of nanoparticles in a polymer matrix is a recognized challenge for obtaining a property-controllable nanocomposite fiber. Another challenge is that the strength and ductility of the nanocomposite fiber decrease significantly with increased weight loading of magnetic nanoparticles in the fiber.

View Article and Find Full Text PDF

We prepared hybrid organogels, where single walled carbon nanotubes (SWNTs) were incorporated into organogel fibers. The SWNTs were covalently functionalized with organic branches that had a similar structure to the organogelator. The effect of relative interactions between the carbon nanotubes (CNTs), organogelator, and solvent molecules on the hybrid organogel structure was investigated.

View Article and Find Full Text PDF

We used periodic mesoporous silica particles for molecular imprinting. The imprinted silica particles showed fast kinetic binding for the template due to their nanosized wall thickness and high surface area.

View Article and Find Full Text PDF