Publications by authors named "Byung Ha"

USP47 is widely involved in tumor development, metastasis, and other processes while performing a more regulatory role in inflammatory responses, myocardial infarction, and neuronal development. In this study, we investigate the functional and biochemical properties of USP47, whereby depleting USP47 inhibited cancer cell growth in a p53-dependent manner-a phenomenon that enhances during the simultaneous knockdown of USP7. Full-length USP47 shows higher deubiquitinase activity than the catalytic domain.

View Article and Find Full Text PDF
Article Synopsis
  • The extracellular matrix (ECM) supports tissue structure and function but is complex and hard to study due to its insolubility.
  • The research focused on decellularizing mouse brains to preserve their shape and ECM components, using a new method called O-CASPER combined with polymerization in oil.
  • The decellularization successfully isolated key ECM proteins like collagen and laminin, indicating potential for future studies on brain and other tissues using this method.
View Article and Find Full Text PDF
Article Synopsis
  • - Upon activation by RAS, RAF kinases trigger the MAP kinase cascade to regulate cell growth, with BRAF mutations being particularly common in cancers like malignant melanoma.
  • - Current selective BRAF inhibitors are ineffective against cancers fueled by oncogenic RAS or certain BRAF mutations, leading to the development of "type II" RAF inhibitors that target RAF dimers instead.
  • - Studies on type II inhibitors tovorafenib and naporafenib show they are most effective against CRAF while being less so against ARAF, revealing their unique binding modes and highlighting potential clinical implications for cancer treatment.
View Article and Find Full Text PDF

Signaling from the Rho family small GTPases controls a wide range of signaling outcomes. Key among the downstream effectors for many of the Rho GTPases are the p21-activated kinases, or PAK group. The PAK family comprises two types, the type I PAKs (PAK1, 2 and 3) and the type II PAKs (PAK4, 5 and 6), which have distinct structures and mechanisms of regulation.

View Article and Find Full Text PDF

Integrin adhesion receptors provide links between extracellular ligands and cytoplasmic signaling. Multiple kinases have been found to directly engage with integrin β tails, but the molecular basis for these interactions remain unknown. Here, we assess the interaction between the kinase domain of p21-activated kinase 4 (PAK4) and the cytoplasmic tail of integrin β5.

View Article and Find Full Text PDF

Open quantum systems interacting with an environment exhibit dynamics described by the combination of dissipation and coherent Hamiltonian evolution. Taken together, these effects are captured by a Liouvillian superoperator. The degeneracies of the (generically non-Hermitian) Liouvillian are exceptional points, which are associated with critical dynamics as the system approaches steady state.

View Article and Find Full Text PDF

The RAF/MEK/ERK pathway is central to the control of cell physiology, and its dysregulation is associated with many cancers. Accordingly, the proteins constituting this pathway, including MEK1/2 (MEK), have been subject to intense drug discovery and development efforts. Allosteric MEK inhibitors (MEKi) exert complex effects on RAF/MEK/ERK pathway signaling and are employed clinically in combination with BRAF inhibitors in malignant melanoma.

View Article and Find Full Text PDF

Mitochondrial dysfunction contributes to neurodegenerative diseases and developmental disorders such as Fragile X syndrome (FXS). The cross-talk between mitochondria and extracellular vesicles (EVs) suggests that EVs may transfer mitochondrial components as intermediators for intracellular communication under physiological and pathological conditions. In the present study, the ability of EVs to transfer mitochondrial components and their role in mitochondrial dysfunction in astrocytes were examined in the brains of mice, a model of FXS.

View Article and Find Full Text PDF

Many serine/threonine protein kinases discriminate between serine and threonine substrates as a filter to control signaling output. Among these, the p21-activated kinase (PAK) group strongly favors phosphorylation of Ser over Thr residues. PAK4, a group II PAK, almost exclusively phosphorylates its substrates on serine residues.

View Article and Find Full Text PDF

Metabolic disorders such as diabetes and obesity are serious global health issues. These diseases are accelerated by mineral deficiencies, emphasizing the importance of addressing these deficiencies in disease management plans. Lactate metabolism is fundamentally linked to glucose metabolism, and several clinical studies have reported that blood lactate levels are higher in obese and diabetic patients than in healthy subjects.

View Article and Find Full Text PDF
Article Synopsis
  • Specific interactions between protein kinases and their substrates determine the specificity of signaling cascades, and this study delves into the STE20 family of kinases to understand these mechanisms.
  • By using peptide arrays, the researchers classified STE20 kinases' phosphorylation site specificity into four distinct groups and identified critical residues that influence this specificity.
  • The study revealed that altering specific residues in kinases could switch their substrate preferences, emphasizing how crucial catalytic site specificity is for effective signal transduction in various pathways, including actin remodeling and the Hippo pathway.
View Article and Find Full Text PDF

The p21-activated kinase (PAK) group of serine/threonine kinases are downstream effectors of RHO GTPases and play important roles in regulation of the actin cytoskeleton, cell growth, survival, polarity, and development. Here we probe the interaction of the type II PAK, PAK4, with RHO GTPases. Using solution scattering we find that the full-length PAK4 heterodimer with CDC42 adopts primarily a compact organization.

View Article and Find Full Text PDF

Ubiquitin and ubiquitin-like proteins (Ubls) are involved in a variety of cellular functions, and dysfunction of these proteins often leads to disease, thus requiring the precise molecular recognition of the partner. Here, we report a structural basis for the recognition of Ufm1 by the Ufm1-specific protease (UfSP), both from Caenorhabditis elegans. Ufm1 functions in endoplasmic reticulum homeostasis, cell cycle regulation, and dysfunctions of this protein can result in breast cancer and neurological disorders.

View Article and Find Full Text PDF

The pseudokinase group encompasses some 10% of protein kinases, but pseudokinases diverge from canonical kinases in key motifs. The two members of the small new kinase family 3 (NKF3) group are considered pseudokinases. These proteins, pseudopodium-enriched atypical kinase 1 (PEAK1, Sugen kinase 269, or SgK269) and pragmin (Sugen kinase 223 or SgK223), act as scaffolds in growth factor signaling pathways, and both contain a kinase fold with degraded kinase motifs at their C termini.

View Article and Find Full Text PDF

Unlabelled: In order for protein kinases to exchange nucleotide they must open and close their catalytic cleft. These motions are associated with rotations of the N-lobe, predominantly around the 'hinge region'. We conducted an analysis of 28 crystal structures of the serine-threonine kinase, p21-activated kinase 4 (PAK4), including three newly determined structures in complex with staurosporine, FRAX486, and fasudil (HA-1077).

View Article and Find Full Text PDF

Proton beam therapy has recently been used to improve local control of tumor growth and reduce side-effects by decreasing the global dose to normal tissue. However, the regulatory mechanisms underlying the physiological role of proton beam radiation are not well understood, and many studies are still being conducted regarding these mechanisms. To determine the effects of proton beams on mitochondrial biogenesis, we investigated: mitochondrial DNA (mtDNA) mass; the gene expression of mitochondrial transcription factors, functional regulators, and dynamic-related regulators; and the phosphorylation of the signaling molecules that participate in mitochondrial biogenesis.

View Article and Find Full Text PDF

TM0800 from Thermotoga maritima is one of the hypothetical proteins with unknown function. The crystal structure determined at 2.3 Å resolution reveals a two domain structure: the N-terminal domain forming a barrel and the C-terminal forming a lid.

View Article and Find Full Text PDF

Recent studies showed that deficiencies of essential minerals including Mg, Ca, and K, and trace minerals including Se, Zn, and V, have implications for the development, prevention, and treatment of several chronic diseases including obesity and type 2 diabetes. Our previous studies revealed that balanced deep-sea water (BDSW), which is composed of desalinated water enriched with Mg and Ca, has potential as a treatment for diabetes and obesity. In this study, to determine whether BDSW regulates mitochondrial biogenesis and function, we investigated its effects on mitochondrial DNA (mtDNA) content, mitochondrial enzyme activity, expression of key transcription factors and mitochondria-specific genes, phosphorylation of signaling molecules associated with mitochondrial biogenesis, and mitochondrial function in 3T3-L1 preadipocytes.

View Article and Find Full Text PDF
Article Synopsis
  • Ubiquitin-fold modifier 1 (Ufm1) specific protease (UfSP) is a cysteine protease that activates Ufm1 by processing its precursor and also removes Ufm1 from its target substrates.
  • There are two forms of UfSP: UfSP1 and UfSP2, the latter having an extra domain at the N-terminus that is unique to certain organisms, like Caenorhabditis elegans.
  • The structure of cUfSP shows that the additional residues form a MPN fold, important for substrate recognition and localization to the endoplasmic reticulum, but lack the metalloprotease activity typical of some MPN domains.
View Article and Find Full Text PDF

Deep-sea water (DSW) and chitosan oligosaccharides (COS) have recently drawn much attention because of their potential medical and pharmaceutical applications. Balanced DSW (BDSW) was prepared by mixing DSW mineral extracts and desalinated water. This study investigated the effects of BDSW, COS, and BDSW containing COS on glucose uptake and their mode of action in mature C2C12 myotubes.

View Article and Find Full Text PDF

In this study, we have investigated the motion of polystyrene microparticles inside a sessile droplet of water actuated by surface acoustic waves (SAWs), which produce an acoustic streaming flow (ASF) and impart an acoustic radiation force (ARF) on the particles. We have categorized four distinct regimes (R1-R4) of particle aggregation that depend on the particle diameter, the SAW frequency, the acoustic wave field (travelling or standing), the acoustic waves' attenuation length, and the droplet volume. The particles are concentrated at the centre of the droplet in the form of a bead (R1), around the periphery of the droplet in the form of a ring (R2), at the side of the droplet in the form of an isolated island (R3), and close to the centre of the droplet in the form of a smaller ring (R4).

View Article and Find Full Text PDF

The six serine/threonine kinases in the p21-activated kinase (PAK) family are important regulators of cell adhesion, motility and survival. PAK6, which is overexpressed in prostate cancer, was recently reported to localize to cell-cell adhesions and to drive epithelial cell colony escape. Here we report that PAK6 targeting to cell-cell adhesions occurs through its N-terminus, requiring both its Cdc42/Rac interactive binding (CRIB) domain and an adjacent polybasic region for maximal targeting efficiency.

View Article and Find Full Text PDF

Temperature gradients (TGs) provide an effective approach to controlling solvated molecules and creating spatiotemporally varying thermal stimuli for biochemical research. Methods developed to date for generating TGs can only create a limited set of static temperature profiles. This article describes a method for establishing dynamic free-form TGs in polydimethylsiloxane (PDMS) as well as in gases and liquids in contact with the PDMS.

View Article and Find Full Text PDF