Background: There is growing evidence that inflammatory processes of activated microglia could play an important role in the progression of nerve cell damage in neurodegenerative disorders such as Parkinson's disease and Alzheimer's disease which harbor features of chronic microglial activation, though the precise mechanism is unknown. In this study, we presented in vivo and ex vivo experimental evidences indicating that activated microglia could exacerbate the survival of axotomized dopaminergic neurons and that appropriate inactivation of microglia could be neuroprotective.
Results: The transection of medial forebrain bundle (MFB) of a rat induced loss of dopaminergic neurons in a time-dependent manner and accompanied with microglial activation.
Activating transcription factor 3 (ATF3) and c-Jun play key roles in either cell death or cell survival, depending on the cellular background. To evaluate the functional significance of ATF3/c-Jun in the peripheral nervous system, we examined neuronal cell death, activation of ATF3/c-Jun, and microglial responses in facial motor nuclei up to 24 weeks after an extracranial facial nerve axotomy in adult rats. Following the axotomy, neuronal survival rate was progressively but significantly reduced to 79.
View Article and Find Full Text PDF