Publications by authors named "Byron Martina"

The viral NS2B-NS3 protease is a promising drug target to combat dengue virus (DENV) and other emerging flaviviruses. The discovery of novel DENV protease inhibitors with antiviral efficacy is hampered by the low predictive power of biochemical assays. We herein present a comparative evaluation of biochemical DENV protease assay conditions and their benchmarking against antiviral efficacy and a protease-specific reporter gene assay.

View Article and Find Full Text PDF

Declared as a Public Health Emergency in 2016 by the World Health Organization (WHO), the Zika virus (ZIKV) continues to cause outbreaks that are linked to increased neurological complications. Transmitted mainly by Aedes mosquitoes, the virus is spread mostly amongst several tropical regions with the potential of territorial expansion due to environmental and ecological changes. The ZIKV envelope protein's domain III, crucial for vaccine development due to its role in receptor binding and neutralizing antibody targeting, was integrated into sterically optimized AP205 VLPs to create an EDIII-based VLP vaccine.

View Article and Find Full Text PDF

The recent global COVID-19 pandemic has had a profound and enduring impact, resulting in substantial loss of life. The scientific community has responded unprecedentedly by investigating various aspects of the crisis, particularly focusing on the acute phase of COVID-19. The roles of the viral load, cytokines, and chemokines during the acute phase and in the context of patients who experienced enduring symptoms upon infection, so called Post-Acute Sequelae of COVID-19 or PASC, have been studied extensively.

View Article and Find Full Text PDF

Over the past few decades, dengue fever has emerged as a significant global health threat, affecting tropical and moderate climate regions. Current vaccines have practical limitations, there is a strong need for safer, more effective options. This study introduces novel vaccine candidates covering all four dengue virus (DENV) serotypes using virus-like particles (VLPs), a proven vaccine platform.

View Article and Find Full Text PDF

T help (Th), stimulation of toll-like receptors (pathogen-associated molecular patterns, PAMPs), and antigen organization and repetitiveness (pathogen-associated structural patterns, PASPs) were shown numerous times to be important in driving B-cell and antibody responses. In this study, we dissected the individual contributions of these parameters using newly developed "Immune-tag" technology. As model antigens, we used eGFP and the third domain of the dengue virus 1 envelope protein (DV1 EDIII), the major target of virus-neutralizing antibodies.

View Article and Find Full Text PDF

Objectives: Plasma leakage, a hallmark of disease in Dengue virus (DENV) infection, is an important clinical manifestation and is often associated with numerous factors such as viral factors. The aim of this study is to investigate the association of virus serotype, viral load kinetics, history of infection, and NS1 protein with plasma leakage.

Methods: Subjects with fever ≤ 48 hours and positive DENV infection were included.

View Article and Find Full Text PDF

Introduction: SARS-CoV-2 has developed a number of Variants of Concern (VOC) with increased infectivity and/or reduced recognition by neutralizing antibodies specific for the receptor binding domain (RBD) of the spike protein. Extended studies of other viruses have shown that strong and broad viral escape from neutralizing serum antibodies is typically associated with the formation of serotypes.

Methods: To address the question of serotype formation for SARS-CoV-2 in detail, we generated recombinant RBDs of VOCs and displayed them on virus-like particles (VLPs) for vaccination and specific antibody responses.

View Article and Find Full Text PDF
Article Synopsis
  • Tick-borne encephalitis virus (TBEV) was first identified in the Netherlands in ticks in 2015 and in humans in 2016, prompting a study to assess its prevalence.
  • During extensive surveillance from 2018 to 2020, researchers tested over 46,000 ticks and 320 rodents at high-risk locations.
  • The findings revealed low infection rates in rodents and ticks, evidence of three TBEV variants circulating, indicating a broader distribution of the virus in the Netherlands than previously recognized.
View Article and Find Full Text PDF

mRNA based vaccines against COVID-19 have proven most successful at keeping SARS-CoV-2 pandemic at bay in many countries. Recently, there is an increased interest in heterologous prime-boost vaccination strategies for COVID-19 to maintain antibody responses for the control of continuously emerging SARS-CoV-2 variants of concern (VoCs) and to overcome other obstacles such as supply shortage, costs and reduced safety issues or inadequatly induced immune-responses. In this study, we investigated the antibody responses induced by heterologous prime-boost with vaccines based on mRNA and virus-like particles (VLPs).

View Article and Find Full Text PDF

Dengue is an important arboviral infectious disease for which there is currently no specific cure. We report gemini-like (geminoid) alkylated amphiphilic peptides containing lysines in combination with glycines or alanines (CHC(O)-Lys-(Gly or Ala)Lys-NHCH, shorthand notation C-KXK-C with X = A or G, and = 0-2). The representatives with 1 or 2 Ala inhibit dengue protease and human furin, two serine proteases involved in dengue virus infection that have peptides with cationic amino acids as their preferred substrates, with IC values in the lower µM range.

View Article and Find Full Text PDF

The rapid geographic expansion of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), the infectious agent of Coronavirus Disease 2019 (COVID-19) pandemic, poses an immediate need for potent drugs. Enveloped viruses infect the host cell by cellular membrane fusion, a crucial mechanism required for virus replication. The SARS-CoV-2 spike glycoprotein, due to its primary interaction with the human angiotensin-converting enzyme 2 (ACE2) cell-surface receptor, is considered a potential target for drug development.

View Article and Find Full Text PDF
Article Synopsis
  • The COVID-19 pandemic's severity has diminished due to vaccination efforts, reducing hospitalizations but not infections, especially with new variants like Omicron.
  • A new vaccine candidate using the receptor-binding domain (RBD) of SARS-CoV-2 on virus-like particles (VLPs) has shown to produce strong antibody responses in mice, effective against various variants of concern.
  • These antibodies, particularly cross-reactive IgG and IgA, are promising for neutralizing both the original virus and significant variants, suggesting a single vaccine could potentially address emerging strains.
View Article and Find Full Text PDF

We conducted a severe acute respiratory syndrome coronavirus 2 antibody seroprevalence study among >2,000 domestic cats from 4 countries during the first coronavirus disease wave in Europe. We found 4.4% seroprevalence using a virus neutralization test and 4.

View Article and Find Full Text PDF

Background: SARS-CoV-2 caused one of the most devastating pandemics in the recent history of mankind. Due to various countermeasures, including lock-downs, wearing masks, and increased hygiene, the virus has been controlled in some parts of the world. More recently, the availability of vaccines, based on RNA or adenoviruses, has greatly added to our ability to keep the virus at bay; again, however, in some parts of the world only.

View Article and Find Full Text PDF

MERS-CoV continues to cause human outbreaks, so far in 27 countries worldwide following the first registered epidemic in Saudi Arabia in 2012. In this study, we produced a nanovaccine based on virus-like particles (VLPs). VLPs are safe vaccine platforms as they lack any replication-competent genetic material, and are used since many years against hepatitis B virus (HBV), hepatitis E virus (HEV) and human papilloma virus (HPV).

View Article and Find Full Text PDF

The ongoing coronavirus disease (COVID-19) pandemic is caused by a new coronavirus (severe acute respiratory syndrome coronavirus type 2 (SARS-CoV-2)) first reported in Wuhan City, China. From there, it has been rapidly spreading to many cities inside and outside China. Nowadays, more than 110 million cases with deaths surpassing 2 million have been recorded worldwide, thus representing a major health and economic issues.

View Article and Find Full Text PDF

Rabies virus (RABV) is able to reach the central nervous system (CNS) without triggering a strong immune response, using multiple mechanisms to evade and suppress the host immune system. After infection a bite or scratch from a rabid animal, RABV comes into contact with macrophages, which are the first antigen-presenting cells (APCs) that are recruited to the area and play an essential role in the onset of a specific immune response. It is poorly understood how RABV affects macrophages, and if the interaction contributes to the observed immune suppression.

View Article and Find Full Text PDF

With the severe acute respiratory syndrome coronavirus (SARS-CoV) in 2002, the middle east respiratory syndrome CoV (MERS-CoV) in 2012 and the recently discovered SARS-CoV-2 in December 2019, the 21st first century has so far faced the outbreak of three major coronaviruses (CoVs). In particular, SARS-CoV-2 spread rapidly over the globe affecting nearly 25.000.

View Article and Find Full Text PDF

Middle East respiratory syndrome coronavirus (MERS-CoV) is a WHO priority pathogen for which vaccines are urgently needed. Using an immune-focusing approach, we created self-assembling particles multivalently displaying critical regions of the MERS-CoV spike protein ─fusion peptide, heptad repeat 2, and receptor binding domain (RBD) ─ and tested their immunogenicity and protective capacity in rabbits. Using a "plug-and-display" SpyTag/SpyCatcher system, we coupled RBD to lumazine synthase (LS) particles producing multimeric RBD-presenting particles (RBD-LS).

View Article and Find Full Text PDF
Article Synopsis
  • Analysis of dengue virus (DENV) infections in Barbados utilized national data from 3,994 confirmed cases, revealing a low case fatality rate of 0.4% and an annual prevalence range of 27.5 to 453.9 cases per 100,000 in febrile patients.
  • Dengue fever (DF) cases showed seasonal fluctuations, with lower transmission during the dry season and a peak in October during the rainy season, alongside three significant epidemics identified in 2010, 2013, and possibly 2016.
  • The majority of DF cases occurred among individuals aged 10-19, and the study highlighted the need for improved public health strategies while considering similarities between dengue and COVID
View Article and Find Full Text PDF

Zika virus (ZIKV) emerged in May 2015 in Brazil, from which it spread to many other countries in Latin America. Cases of ZIKV infection were eventually also reported in Curaçao (January 2016) and Bonaire (February 2016). In the period of 16 December 2015 until 26 April 2017, serum, EDTA-plasma or urine samples were taken at Medical Laboratory Services (MLS) from patients on Curaçao and tested in qRT-PCR at the Erasmus Medical Centre (EMC) in the Netherlands.

View Article and Find Full Text PDF

(ZIKV) is a similar to (DENV) in terms of transmission and clinical manifestations, and usually both viruses are found to co-circulate. ZIKV is usually transmitted by mosquitoes bites, but may also be transmitted by blood transfusion, via the maternal-foetal route, and sexually. After 2015, when the most extensive outbreak of ZIKV had occurred in Brazil and subsequently spread throughout the rest of South America, it became evident that ZIKV infection during the first trimester of pregnancy was associated with microcephaly and other neurological complications in newborns.

View Article and Find Full Text PDF