Selective coupling of G protein (heterotrimeric guanine nucleotide-binding protein)-coupled receptors (GPCRs) to specific Gα-protein subtypes is critical to transform extracellular signals, carried by natural ligands and clinical drugs, into cellular responses. At the center of this transduction event lies the formation of a signaling complex between the receptor and G protein. We report the crystal structure of light-sensitive GPCR rhodopsin bound to an engineered mini-G protein.
View Article and Find Full Text PDFG-protein-coupled receptors (GPCRs) are involved in many physiological processes and are therefore key drug targets. Although detailed structural information is available for GPCRs, the effects of lipids on the receptors, and on downstream coupling of GPCRs to G proteins are largely unknown. Here we use native mass spectrometry to identify endogenous lipids bound to three class A GPCRs.
View Article and Find Full Text PDFThe adenosine A receptor (AR) is a prototypical G protein-coupled receptor (GPCR) that couples to the heterotrimeric G protein G. Here, we determine the structure by electron cryo-microscopy (cryo-EM) of AR at pH 7.5 bound to the small molecule agonist NECA and coupled to an engineered heterotrimeric G protein, which contains mini-G, the βγ subunits and nanobody Nb35.
View Article and Find Full Text PDFG protein-coupled receptors (GPCRs) are key signaling proteins that regulate nearly every aspect of cell function. Studies of GPCRs have benefited greatly from the development of molecular tools to monitor receptor activation and downstream signaling. Here, we show that mini G proteins are robust probes that can be used in a variety of assay formats to report GPCR activity in living cells.
View Article and Find Full Text PDFFront Pharmacol
December 2017
Adenosine receptors (ARs) comprise the P1 class of purinergic receptors and belong to the largest family of integral membrane proteins in the human genome, the G protein-coupled receptors (GPCRs). ARs are classified into four subtypes, A, A, A, and A, which are all activated by extracellular adenosine, and play central roles in a broad range of physiological processes, including sleep regulation, angiogenesis and modulation of the immune system. ARs are potential therapeutic targets in a variety of pathophysiological conditions, including sleep disorders, cancer, and dementia, which has made them important targets for structural biology.
View Article and Find Full Text PDFStructure determination of G protein-coupled receptors (GPCRs) in the inactive state bound to high-affinity antagonists has been very successful through the implementation of a number of protein engineering and crystallization strategies. However, the structure determination of GPCRs in their fully active state coupled to a G protein is still very challenging. Recently, mini-G proteins were developed, which recapitulate the coupling of a full heterotrimeric G protein to a GPCR despite being less than one-third of the size.
View Article and Find Full Text PDFG protein-coupled receptors (GPCRs) promote cytoplasmic signalling by activating heterotrimeric G proteins in response to extracellular stimuli such as light, hormones and nucleosides. Structure determination of GPCR-G protein complexes is central to understanding the precise mechanism of signal transduction. However, these complexes are challenging targets for structural studies due to their conformationally dynamic and inherently transient nature.
View Article and Find Full Text PDFG protein-coupled receptors (GPCRs) regulate cellular signalling through heterotrimeric G proteins and arrestins in response to an array of extracellular stimuli. Structure determination of GPCRs in an active conformation bound to intracellular signalling proteins has proved to be highly challenging. Nonetheless, three new structures of GPCRs in an active state have been published during the last year, namely the adenosine A receptor (AR) bound to an engineered G protein, opsin bound to visual arrestin and the μ opioid receptor (μOR) bound to a G protein-mimicking nanobody.
View Article and Find Full Text PDFHeterotrimeric G proteins modulate intracellular signalling by transducing information from cell surface G protein-coupled receptors (GPCRs) to cytoplasmic effector proteins. Structural and functional characterisation of GPCR-G protein complexes is important to fully decipher the mechanism of signal transduction. However, native G proteins are unstable and conformationally dynamic when coupled to a receptor.
View Article and Find Full Text PDFMini-G proteins are the engineered GTPase domains of Gα subunits. They couple to GPCRs and recapitulate the increase in agonist affinity observed upon coupling of a native heterotrimeric G protein. Given the small size and stability of mini-G proteins, and their ease of expression and purification, they are ideal for biophysical studies of GPCRs in their fully active state.
View Article and Find Full Text PDFG protein-coupled receptors (GPCRs) modulate cytoplasmic signalling in response to extracellular stimuli, and are important therapeutic targets in a wide range of diseases. Structure determination of GPCRs in all activation states is important to elucidate the precise mechanism of signal transduction and to facilitate optimal drug design. However, due to their inherent instability, crystallisation of GPCRs in complex with cytoplasmic signalling proteins, such as heterotrimeric G proteins and β-arrestins, has proved challenging.
View Article and Find Full Text PDFG-protein-coupled receptors (GPCRs) are essential components of the signalling network throughout the body. To understand the molecular mechanism of G-protein-mediated signalling, solved structures of receptors in inactive conformations and in the active conformation coupled to a G protein are necessary. Here we present the structure of the adenosine A(2A) receptor (A(2A)R) bound to an engineered G protein, mini-Gs, at 3.
View Article and Find Full Text PDFLeptin regulates energy homeostasis, fertility, and the immune system, making it an important drug target. However, due to a complete lack of structural data for the obesity receptor (ObR), leptin's mechanism of receptor activation remains poorly understood. We have crystallized the Fab fragment of a leptin-blocking monoclonal antibody (9F8), both in its uncomplexed state and bound to the leptin-binding domain (LBD) of human ObR.
View Article and Find Full Text PDFObjective: To study the interaction between human steroid 21-hydroxylase (21-OH) and monoclonal antibodies (MAbs) to 21-OH directed to 3 different epitopes recognised by 21-OH autoantibodies characteristic of autoimmune Addison's disease.
Design: Build comparative structural models of 21-OH, 21-OH MAbs and complexes of 21-OH-21-OH MAbs and study the effects of 21-OH MAbs on 21-OH enzyme activity. Then, analyse the relationship between sites important for binding of 21-OH MAbs and 21-OH autoantibodies and sites important for 21-OH enzyme activity.